Radiation Testing of Advanced Non-Volatile Memories

Ted Wilcox

ted.wilcox@nasa.gov
NASA Goddard Space Flight Center
Acronyms

<table>
<thead>
<tr>
<th>BER: Bit Error Rate</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS: Complementary Metal-Oxide Semiconductor</td>
<td>NVM: Non-Volatile Memory</td>
</tr>
<tr>
<td>COTS: Commercial Off The Shelf</td>
<td>nvSRAM: Non-volatile SRAM</td>
</tr>
<tr>
<td>DRAM: Dynamic Random Access Memory</td>
<td>QLC: Quad-level Cell</td>
</tr>
<tr>
<td>ECC: Error-Correcting Code</td>
<td>RBER: Raw Bit Error Rate</td>
</tr>
<tr>
<td>EDAC: Error Detection and Correction</td>
<td>SBU: Single Bit Upset</td>
</tr>
<tr>
<td>EEPROM: Electrically-Erasable Programmable Read-Only Memory</td>
<td>SEE: Single Event Effects</td>
</tr>
<tr>
<td>FRAM: Ferroelectric RAM</td>
<td>SEFI: Single Event Functional Interruption</td>
</tr>
<tr>
<td>GEO: Geostationary Earth Orbit</td>
<td>SEU: Single Event Upset</td>
</tr>
<tr>
<td>LET: Linear Energy Transfer</td>
<td>SLC: Single-level Cell</td>
</tr>
<tr>
<td>MBU: Multiple Bit Upset</td>
<td>SRAM: Static Random Access Memory</td>
</tr>
<tr>
<td>MCU: Multiple Cell Upset</td>
<td>SSD: Solid State Drive</td>
</tr>
<tr>
<td>MLC: Multi-level Cell</td>
<td>SSR: Solid State Recorded</td>
</tr>
<tr>
<td>MRAM: Magnetoresistive RAM</td>
<td>STT-MRAM: Spin-torque Transfer MRAM</td>
</tr>
<tr>
<td>NAND: Not AND (Flash Technology)</td>
<td>TID: Total Ionizing Dose</td>
</tr>
<tr>
<td>NEPP: NASA Electronics and Packaging</td>
<td>TLC: Triple-level Cell</td>
</tr>
<tr>
<td></td>
<td>UBER: Uncorrected Bit Error Rate</td>
</tr>
</tbody>
</table>

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Outline

- Non-Volatile Memory Technologies
- Tests, Testability, and Facilities Of Use
- Typical Memory Test Setups
- Recent Radiation Results
- Ongoing Testing & Future Plans
NVM Technology

• **Advanced Non-Volatile Memories Are:**
 – Technologies or products used for long- and intermediate-term storage of data in a non-volatile storage cell
 – Typically used in
 • EEPROMs & nvSRAMs (serial, small, random access)
 • Solid-State Recorders (complex, large, sequential access)
 • Boot PROMs / MCU code memory (small, random access, hi-reliability)
 • Certain FPGAs and embedded applications

• **Embedded or DRAM-like NVM technologies are a collaborative effort with other NEPP tasks (scaled CMOS evaluation, DDR memories)**

NEPP’s focus here is technology evaluation
Common NVM Technologies (today…)

NOR Flash
- Electrical charge
- Random Access
- Low Density
- Simple interface
- Limited endurance
- Varied rad tolerance
- Example Usage: FPGA configuration

NAND Flash
- Electrical charge
- Seq Access
- Highest Density
- Complex interfaces
- Very limited endurance
- Limited rad tolerance
- Example Application: bulk data storage

FRAM
- Ferroelectric orientation
- Random Access
- Low Density
- Simple interfaces
- High endurance
- Rad tolerant

ReRAM, 3DXPoint, PCM, CBRAM
- Resistive memory
- Random Access
- Lowest to Highest Density
- Varied interfaces
- Very high endurance
- Excellent rad tolerance
- Still developing…

STT-MRAM
- Electron spin
- Random Access
- Lowest* Density
- Simple interfaces
- Very high endurance
- Excellent rad tolerance
- Still developing…
Common NVM Technologies (today…)

NOR Flash
- Electrical charge
- Random Access
- Low Density
- Simple interface
- Limited endurance
- Varied rad tolerance
- Example Usage: FPGA configuration

NAND Flash
- Electrical charge
- Seq Access
- Highest Density
- Complex interface
- Very limited endurance
- Limited rad tolerance
- Example Application: bulk data storage

FRAM
- Ferroelectric orientation
- Random Access
- Low Density
- Simple interfaces
- High endurance
- Rad tolerant

ReRAM, 3DXPoint, PCM, CBRAM
- Resistive memory
- Random Access
- Lowest Density
- Varied interfaces
- Very high endurance
- Excellent rad tolerance
- Still developing…

STT-MRAM
- Electron spin
- Random Access
- Low Density
- Simple interfaces
- Very high endurance
- Excellent rad tolerance
- Still developing…

NOW TESTING

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Common NVM Radiation Test Interests

Memory Cell SEU
- Powered off state to isolate from control circuitry
- Powered on and dynamic tests to evaluate differences
- Consider number of bits relative to fluence
- SBU vs. MBU, angular effects, data pattern, etc

Peripheral Circuitry SEFI
- Powered on and operating dynamically
- Depends on underlying tech, but can reveal error signatures typical for a memory type

TID Tolerance
- Evaluate all operational modes
- Irradiate in appropriate conditions (worse case? flight-like?)
- Failure distributions, lot-specific testing issues

Memory-Specific Hard Failures
- Stuck bits
- Broken program/erase circuits

Single-Event Latchup
- Powered on, static and dynamic
- High voltage and temperature
- Focus on power supply and recovery, less on SEFI that will inevitably occur
- Strongly dependent on fab process

Relative importance of each varies tremendously by technology and application

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Heavy Ion Testing

Memory Cell SEU
- Powered off state to isolate from control circuitry
- Powered on and dynamic tests to evaluate differences
- Consider number of bits relative to fluence
- SBU vs. MBU, angular effects, data pattern, etc

Peripheral Circuitry SEFI
- Powered on and operating dynamically
- Depends on underlying tech, but can reveal error signatures typical for a memory type

TID Tolerance
- Evaluate all operational modes
- Irradiate in appropriate conditions (worse case? flight-like?)
- Failure distributions, lot-specific testing issues

Single-Event Latchup
- Powered on, static and dynamic
- High voltage and temperature
- Focus on power supply and recovery, less on SEFI that will inevitably occur
- Strongly dependent on fab process

Memory-Specific Hard Failures
- Stuck bits
- Broken program/erase circuits

Ideal
Helpful
Not Useful
Co-60 Irradiation

Memory Cell SEU
- Powered off state to isolate from control circuitry
- Powered on and dynamic tests to evaluate differences
- Consider number of bits relative to fluence
- SBU vs. MBU, angular effects, data pattern, etc

Peripheral Circuitry SEFI
- Powered on and operating dynamically
- Depends on underlying tech, but can reveal error signatures typical for a memory type

TID Tolerance
- Evaluate all operational modes
- Irradiate in appropriate conditions (worse case? flight-like?)
- Failure distributions, lot-specific testing issues

Memory-Specific Hard Failures
- Stuck bits
- Broken program/erase circuits

Single-Event Latchup
- Powered on, static and dynamic
- High voltage and temperature
- Focus on power supply and recovery, less on SEFI that will inevitably occur
- Strongly dependent on fab process

Ideal
Helpful
Not Useful
Pulsed Laser

Memory Cell SEU
- Powered off state to isolate from control circuitry
- Powered on and dynamic tests to evaluate differences
- Consider number of bits relative to fluence
- SBU vs. MBU, angular effects, data pattern, etc

Peripheral Circuitry SEFI
- Powered on and operating dynamically
- Depends on underlying tech, but can reveal error signatures typical for a memory type

TID Tolerance
- Evaluate all operational modes
- Irradiate in appropriate conditions (worse case? flight-like?)
- Failure distributions, lot-specific testing issues

Single-Event Latchup
- Powered on, static and dynamic
- High voltage and temperature
- Focus on power supply and recovery, less on SEFI that will inevitably occur
- Strongly dependent on fab process

Memory-Specific Hard Failures
- Stuck bits
- Broken program/erase circuits

Ideal
Helpful
Not Useful
High Energy Protons

Memory Cell SEU
- Powered off state to isolate from control circuitry
- Powered on and dynamic tests to evaluate differences
- Consider number of bits relative to fluence
- SBU vs. MBU, angular effects, data pattern, etc

Peripheral Circuitry
SEFI
- Powered on and operating dynamically
- Depends on underlying tech, but can reveal error signatures typical for a memory type

TID Tolerance
- Evaluate all operational modes
- Irradiate in appropriate conditions (worse case? flight-like?)
- Failure distributions, lot-specific testing issues

Single-Event Latchup
- Powered on, static and dynamic
- High voltage and temperature
- Focus on power supply and recovery, less on SEFI that will inevitably occur
- Strongly dependent on fab process

Memory-Specific Hard Failures
- Stuck bits
- Broken program/erase circuits

Ideal
Helpful
Not Useful
Testability & Challenges

• **We want to evaluate rad tolerance of memory blocks**
 – Product-level performance data is great too
 – But sometimes the product limits our view → What’s happening inside?

• **Not always easy to decouple memory errors from controller errors or see past EDAC**

• **Can’t always shield or remove controlling circuitry.**

TID:
- Limited biasing configurations
- May be able to place controller a few feet away and heavily shield

Heavy Ions:
- Easy to “shield” controller
- Impossible to fully test large memories in real-time
- Vacuum chamber feed-thrus limit speed or prevent testing entirely

Laser
- Focus on individual memory cells or raster across control circuitry
- But memories often have a LOT of metal on top and large areas

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Sample Memory Tester Setups

- **COTS ARM Microcontroller Boards**
 - < $30
 - Easy toolset & programming; low-level bare-metal access
 - Up to 240 MHz CPU core
 - 10Mbps USB link to PC
 - Not appropriate for DRAM, high-bandwidth, or timing-sensitive devices
 - Sufficient for heavy ion testing, some TID, but not proton tolerant

- **PC-based m.2 PCIe tests**
 - PCIe to Thunderbolt 3 for high-speed testing (TID)
 - PCIe to USB bridge for low-speed testing at long-distance (e.g. SEL/SEFI)
Recent Results – Avalanche STTMRAM

- Currently evaluating 40nm sample parts
- pMTJ STT-MRAM
- 16Mb serial nvSRAM

- Memory array cells proven at 55nm node:
 - No SEU after 1.1×10^7/cm2 @ 85.4 MeV·cm2/mg
 - Fully functional, no errors after 500+ krad(Si)

- Overall performance depends on underlying CMOS process:
 - Low SEFI threshold for control circuitry
 - Latchup investigation at 40nm
 - Focused laser testing

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Recent Results – 3D NAND Flash

• Planar NAND flash limited by CMOS scaling
 – Step back a few nodes but grow vertically (96+ layers!)
• Extensive SEE/TID testing of Micron 32-layer 3D NAND for flight use

• Some SSD test data on:
 – Intel, Micron 64-Layer
 – WD/SD/Toshiba 64-Layer
 – Samsung 64-Layer
 – more coming soon…
Recent Results -- 3D NAND Flash

- Three-dimensional ion track structure can be determined experimentally, and results look exactly as you’d expect:

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
Recent Results – 3D NAND Flash

- 3D, MLC+ NAND has high ECC requirements based on normal “background” errors intrinsic to NAND flash (left)

Non-irradiated part (MLC)
After 1x10^6/cm² Neon (MLC)

Plus Heavy-Ion Irradiation
3D NAND Flash TID Testing

- Memory devices – like everything EEE – are getting complicated.
- Are we testing complex devices in a worst-case configuration?

“It’s CMOS. Biased is probably worst-case, but we’ll do half the parts grounded just to be sure.”
3D NAND Flash - Biased vs Unbiased TID

Erase circuitry is flash’s weakest link

Biased irradiation appears slightly worse than unbiased

Micron 32-layer NAND tested in SLC mode

The big question: Are we good to fly?

Biased irradiation appears slightly worse than unbiased.
What if we dynamically operate device to keep our weak link operational?

Highly application-specific testing...

Don’t forget about endurance limitations – in this case we had 30,000 cycles to play with.
3D NAND Flash TID (Rewrite)

- Well-established that erase circuitry is weakest link for TID (high-voltage CPs)
- Commonly fail 20-75 krad (Si) while program and read circuitry may last longer
- In continuous rewrite application, retention errors are minimal but eventually we can’t program clean data
3D NAND Flash TID (Read Only)

• Consider a read-only test:
• Traditional dose-step testing does not thoroughly exercise anything
• Time between steps limits ability to implement heavy testing at each dose
• Always consider your application!
MLC vs SLC

- So far, applications seem to be using SLC devices or “SLC mode” if at all possible – for performance and endurance... not thinking rad
- MLC doubles our density but at what cost to rad tolerance?

To be presented by Ted Wilcox at the 2019 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 17-20, 2019.
3D NAND Flash TID

• Still processing data to evaluate:
 – Memory fidelity: Read-only (retention) results, effects on R/W cycle (endurance) limits
 – 3D Factors: Bit error rate vs layer/position seems to vary
 – Mode of operation: Need more MLC TID data
 – Facility Factors: Angle of irradiation, dose rate, time-to-measure

• End Goal: NEPP will have extensive data on SEE and TID test configurations as a solid baseline comparison for future 3D NAND flash
Other Plans Moving Forward

- **3D NAND Flash**
 - Piece-part testing when able, particularly as projects begin to use them!
 - SSD testing as a rough figure; a work in progress…
 - These parts will be (or are!) obsolete long before they fly

- **STT-MRAM**
 - Possible add’l testing on 40nm Avalanche STT-MRAM
 - Avalanche 40nm STT-MRAM TID testing ~Fall
 - Embedded MRAM testing collaborations with other NEPP tasks

- **Intel Optane**
 - Basic proton and heavy-ion SEU data
 - 3D X-Point (Intel Optane) TID testing imminent

- **Identify emerging non-flash technologies & partnership opportunities…………..**