RF Driven Lifetesting of GaN Power MMICs

John Scarpulla, Chris Clark, Albert Young and Yat Chan

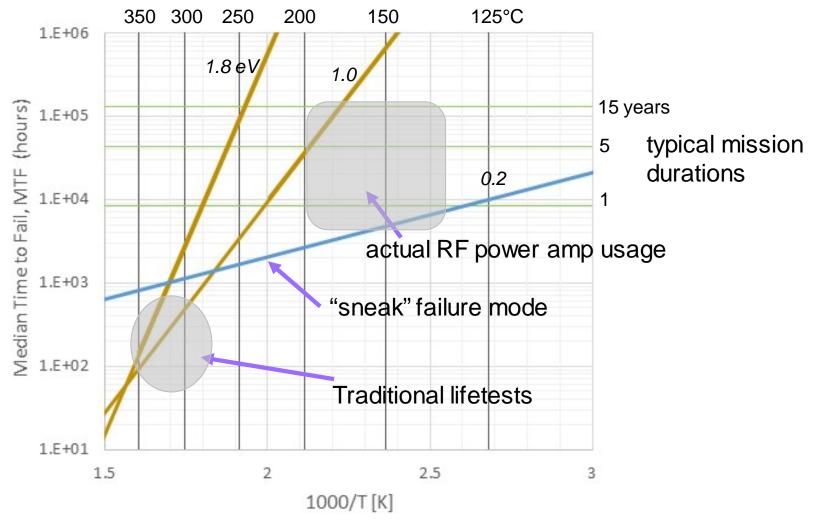
> 19 June, 2019 NASA NEPP Conference Beltsville, MD

© 2019The Aerospace Corporation

Statement of the Problem

the qualification question.....

- GaN RF HEMT technology is an excellent option for high power SSPA applications in space
 - VHF to mm-Wave
 - Single transistors up to 200W and beyond
 - MMICs to 50W and beyond


However

- GaN RF HEMT technology has not yet been flown in a Class A or B mission
 - ultra-reliability must be proven
 - a handful of successful demonstration programs with relatively short durations
- How to qualify?
 - step stressing
 - DC lifetests, 3 temperatures
 - HTRB
- ref. Aerospace Technical Report, ATR-2017-0782 "DRAFT Guidelines for Space
- SOA Qualification of GaN HEMT Technology", J. Scarpulla & C. Gee, May 23, 2017
- ESD, etc.
- RF-driven lifetesting "Test Like You Fly" (TLYF) this presentation

But "RF driven lifetests are hard!"

Traditional lifetests might miss "sneak" failure mode

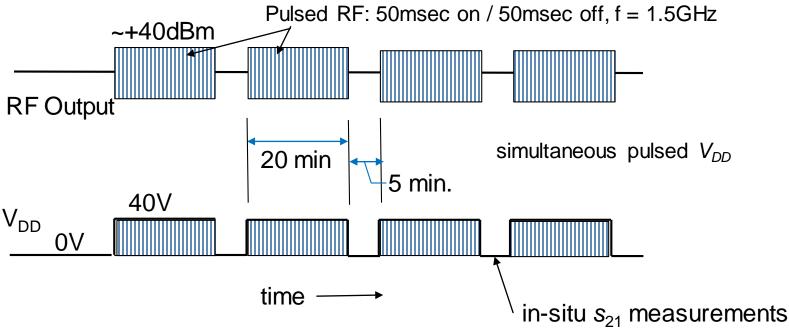
low E_A mechanism(s) must be disproven

TLYF testing recommended to confirm high reliability

Flight-like Test Article

- Custom broadband MMIC power amp
 - 0.25µm gate length HEMTs process
 - Output Power 41dBm (12.5W) min.
 - at 6dB compression
 - at pulsed duty cycle $\leq 50\%$
 - at $T_{ch} = 200^{\circ}C$
 - Power-added efficiency 40%
 - Drain voltage $V_{DD} = 40V$
 - Drain Current, Quiescent $I_{DQ} = 480 \text{ mA}$
 - bandwidth 150MHz 2GHz
 - devices packaged in ceramic packages
 - removable lids
- Success Criteria (in-situ)
 - output power degradation, $\Delta P_{out} < 1 \ dB$
 - small signal gain degradation, $\Delta s_{21} < 1 dB$
 - current at $I_D = 860 \text{ mA}$, $I_G < 1 \text{ mA/mm}$

test goals: 4 DUTs tested for 5000 hours


TLYF details

- Burn-in
 - $T = 200^{\circ}C$ channel, 320 hours
 - DC only, $V_{DD} = 40V$, $I_{DQ} = 0.48 A$
 - N_2 purged
- pre/post measurements
 - swept s-parameters
 - P_{out} vs. P_{in} at 1.5 GHz
 - pulsed IV
- TLYF test
 - defined pulsed waveform
 - $P_{out} \sim 41 \, dBm$
 - $P_{in} \sim 10 \, dBm$
 - $T = 50^{\circ}$ C baseplate, (est. 200°C channel)
 - lab air environment
 - $I_D = 860 \text{ mA}, \text{ pulsed}$
 - in-situ measurements of
 - gain (s_{21}), P_{out} , I_G gate current

RF stress waveforms for TLYF

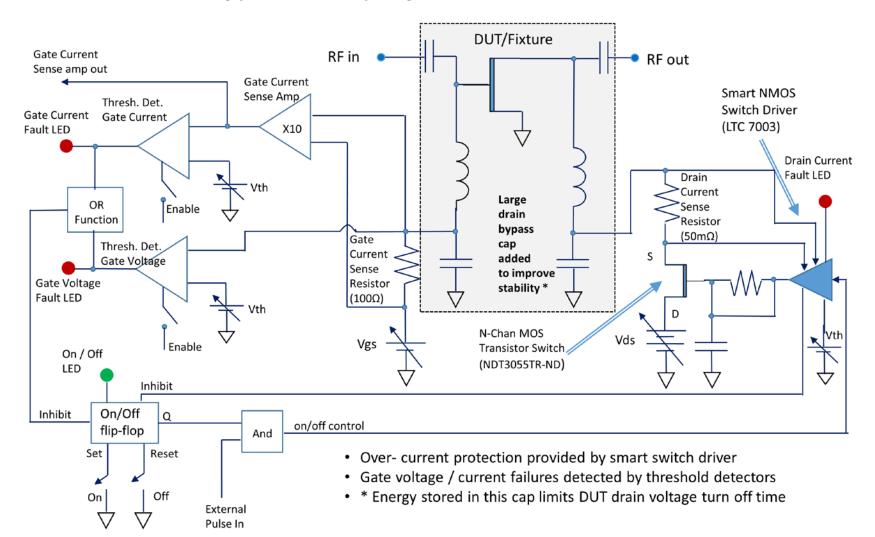
pulsed operation to simulate mission

- RF input has a 50% duty cycle: 50msec on / 50 msec off f = 1.5 GHz
- Maintain pulsed RF input for 20 minutes on period
- Then RF input and VDD are switched off for 5 min. rest period
 - s21 measurement at f=1.5GHz during each off period
- Repeat the sequence for up to 5,000 hours

⁻ Risetimes and falltimes of RF pulses = 1μ sec

- VDD and VG on/off risetime and falltime = 50μ sec

TLYF Essential Requirements


test set design features

- continuous measurement of P_{out} , I_D , I_G , V_D , V_G
 - once per second, data stored
- Protections (very important)
- Substantial V_{DD} power supply can potentially do serious damage
 - GaN HEMT's are very susceptible to damage from improper DC biasing
- Rapidly (within μ seconds) remove prime VDD power IF:
 - $-V_G$ gate bias is lost,
 - protects device from catastrophic destruction in case of a gate short failure
 - gate short could be a dendrite, a weak spot in field plate, MIMCAP failure etc.
 - I_G gate currtent rises above acceptable limit (> 1mA/mm)
 - possible indication of imminent failure
 - hot electron degradation or trap generation at drain-gate recess
 - drain overcurrent, I_D
 - protects device from catastrophic destruction in case a drain-source short develops
- In case bad things happen, the DUT does not suffer collateral damage
 - DUT failure analysis can be performed

Special measures have been taken to protect the GaN DUTs

MMIC test set block diagram

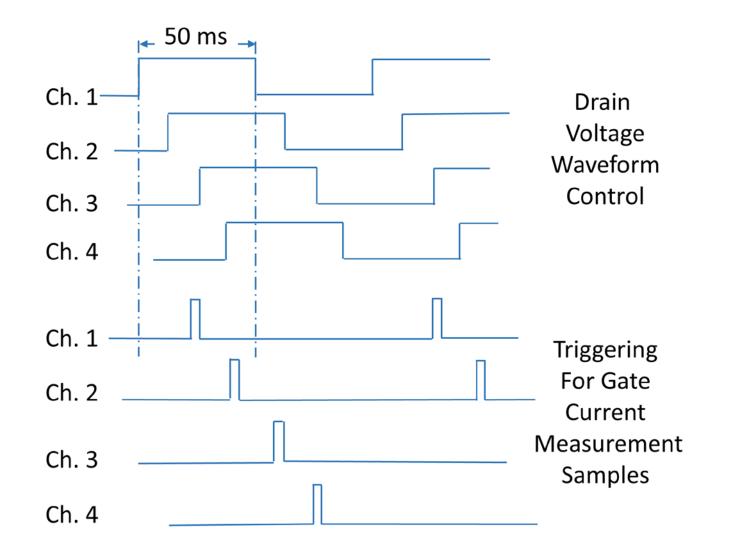
detects three fault types that rapidly latch the DUT off

Luckily the protection circuits were only invoked in cases of operator error – no test failure conditions were detected

Test Set

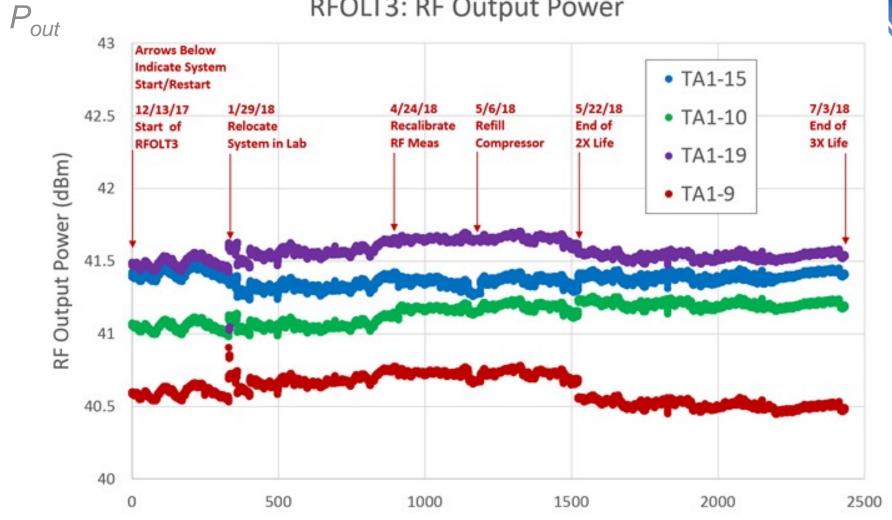
protection circuits

voltage/ current meters


LabView software Instruments: spectrum analyzer, RF switches, oscilloscope, pulser, RF source 4 DUTs in modified Accel-RF[™] fixtures mounted on cold plate

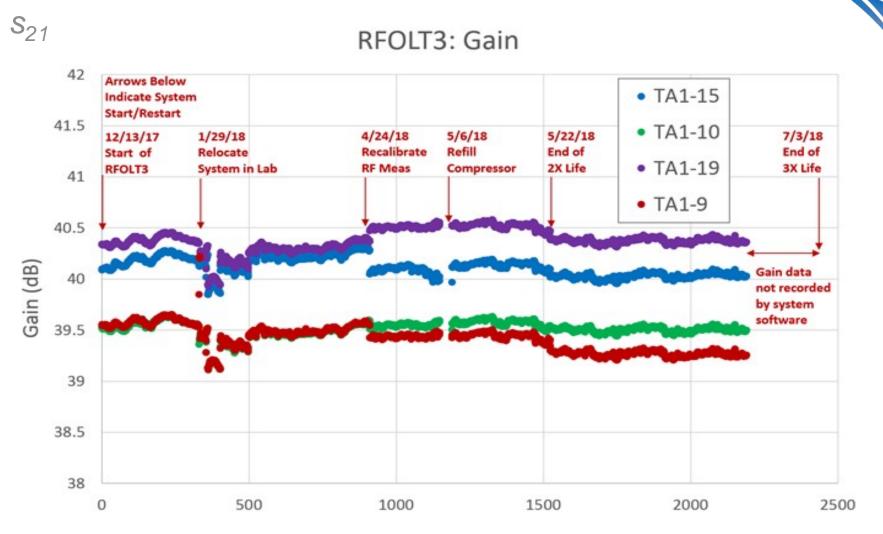
drain power supplies

Custom test set developed for unattended continuous operation


Pulse Scheme

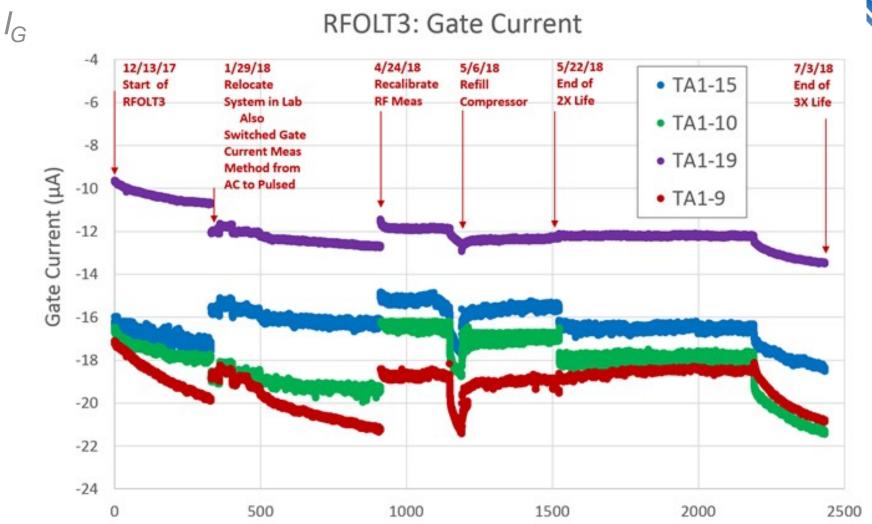
staggering of pulses to reduce noise

in-situ Results


RFOLT3: RF Output Power

Elapsed Time (Hrs.)

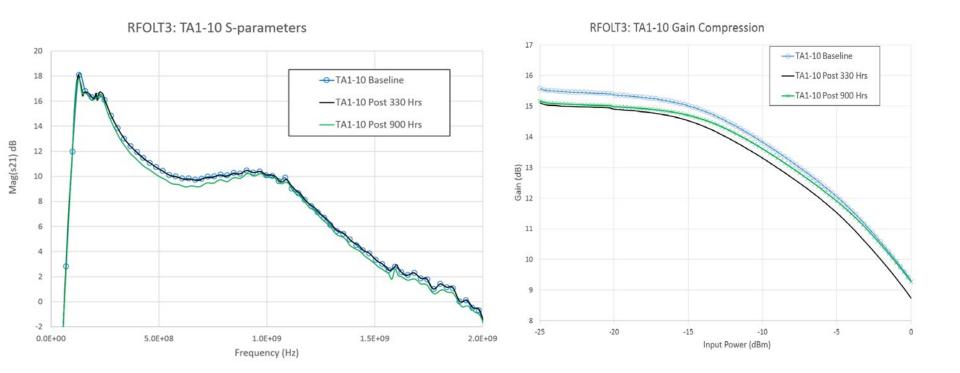
 ΔP_{out} is within ± 0.2 dB for 2450 hours, success criterion is ± 1 dB


in-situ Results

Elapsed Time (Hrs.)

 Δs_{21} is within \pm 0.5 dB for 2450 hours, success criterion is \pm 1 dB

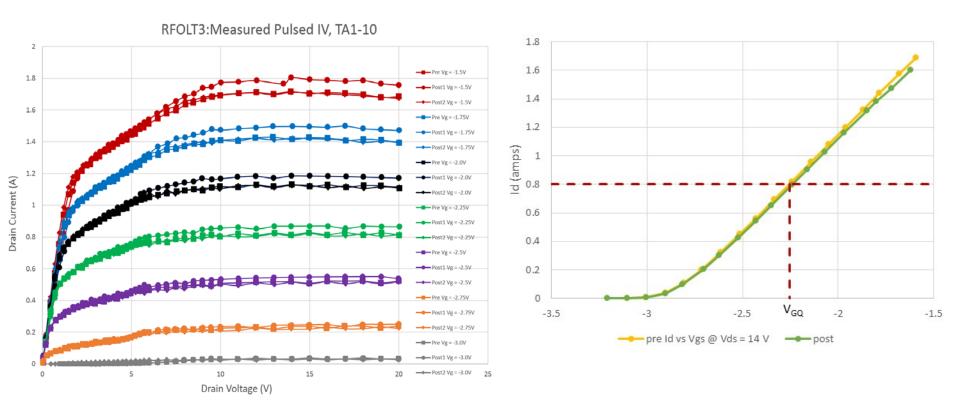
in-situ Results



Elapsed Time (Hrs.)

 $|IG| < 22 \ \mu A (< 18.3 \ \mu A/mm)$ success criterion is < 1 mA/mm

Ex-situ results


gain and gain compression, at 0, 330 and 900 hrs (test still running)

small changes are insignificant and within instrument and configurational errors

Ex-situ results

Pulsed IV and transfer characteristic at 0, 330 and 900 hrs.

small changes are insignificant and within instrument and configurational errors

Conclusions

GaN RF-driven lifetest

- A RF-driven lifetest system has been configured
 - pulsed operation at 1.5GHz
 - special attention paid to protection of the devices in case of faults or failures
 - custom software
 - in situ measurements of key parameters of interest:
 - output power, gain and gate current
- a custom wideband GaN MMIC device has been tested under TLYF conditions
 - tests have successfully run to ~2,500 hours
 - with goal to run to > 5,000 hours
 - output power, gain and gate current changed negligibly to ~2500 hours
 - goal is to run to 5,000 hours or longer
- qualification of the GaN device and fabrication process was enhanced
 - eliminates concerns about low E_A mechanisms
 - low E_A "sneak" mechanisms could be missed in traditional qual
- Lessons learned
 - implement an elapsed time counter
 - dry runs to simulate power shutdown, air conditioning failure, etc.
 - rehearse the startup and shutdown
 - careful fixture design

Acronyms

- HEMT high electron mobility transistor
- DUT device under test
- IV current (I) vs. voltage (V)
- TLYF test like you fly
- RF radio frequency
- DC direct current
- VHF very high frequency
- HTRB high temperature reverse bias (stress test)
- SOA safe operating area
- ESD electrostatic discharge
- mmW millimeter wave
- MMIC monolithic microwave integrated circuit
- E_A activation energy
- HPA high power amplifier
- SSPA solid state power amplifier
- GaN Gallium Nitride
- I_{DQ} drain current, quiescent point
- V_{DD} drain power supply voltage
- T_{ch} channel temperature
- N₂ nitrogen (gas)
- RFOLT RF operational life test
- P_{out} vs. P_{in} measurement and plot of output power vs. input power