NEPP/NEPAG
DC/DC Converter & Hybrid Working Group

John E. Pandolf
Lead EEE Parts Engineer
NASA Research Center
EEE Parts Office
Electronics Systems Branch

(757) – 864 - 9624
John.E.Pandolf@nasa.gov

June, 2020
Mission: Create & Maintain Working environment for the communication of critical information on key issues regarding the reliability of Hybrid Microcircuits (with specific emphasis on DC/DC Converters) addressing all aspects of product performance specifications, manufacturing, & procurement.

Monthly Teleconferences
- First Wednesday of every month @ 1:00 p.m. EST
- Additional when / as necessary……
- Usual Attendees: NASA Centers & JPL, Aerospace Corporation, NAVSEA & DLA(L&M)

Introduction
-seat

Background

Founded: Spring 2001 time frame to help reduce risk of using DC-DC converters in hardware across the Agency. Initial thought was to provide forum for users to communicate about their converter experiences & challenges.

- Similar forum to NEPAG meetings
- Lead by Langley EEE Parts personnel,
- Small User forum initially
- Now covers all Hybrids (all MIL-PRF-38534 product)
- Power Converters still primary focus – high risk commodity

Monthly Teleconferences

- Customer Focused - additional meetings when/as necessary…
- Topics Address User needs:
- Guest Component Vendor Product Briefings / Participation
- Utilize Govt.Working Group for broader scope issues – such as PIND, Hermeticity, Gas Analysis, Solder Seal…etc…as they apply to other commodities
Motivation

Switch Mode Power Supplies (DC/DC Converters)

- Enormously Complex due to Extreme Miniaturization
- High Risk due to type of Parts, Materials & Process used for assembly
- Paramount Programmatic Penalties [Budget, Time]
- Manufacturing challenges
 - Assembling hundreds of components using various techniques in a hermetic package (typically 1in² – 5in²)
 - Low production numbers
 - High reliability in extreme environments [verified by sampling & screening]

* Data compiled from Hi-Rel Laboratories at Space Parts Working Group Conference presentation (2000-2020)
Working Group Key Points

- **General Topics**
 - Sharing of data on purchases, requirements, specifications (SMDs vs. SCDs)
 - Customizations by Centers and Product Performance Issues
 - Discussions on Failure Mechanisms, Purchase Lead time and delay issues
 - Sharing of information on failures, delays, GIDEPs, etc.
 - Updates from Defense Logistics Agency
 - Moves, Consolidations, New ownership
 - Alternate Methods, specification updates
 - Attendance at JEDEC / G-12 Conferences (JC-13* Government Liaison)
 - Attend 13.5 Hybrid Working Group Meetings

* JC-13 is responsible for standardizing quality and reliability methodologies for solid state products used in military, space, and other environments requiring special-use condition capabilities beyond standard commercial practices. This includes long-term reliability and/or special screening requirements.
General Topics

- Manufacturer Presentations – Existing & New Product Line Introductions
- Radiation performance / Testing
- Review of DLA Audits for certification/re-certification of Manufacturer facilities
 - (Major DC-DC Converter supplier move 2019 (Redmond, Wa.))
 - (Major Oscillator supplier move 2020 (Culver City, Ca.))
- Review of Specifications
 - MIL-PRF-38534, General Specification for Hybrid Microcircuits
 - MIL-STD-883, Test Method Standard for Microcircuits (X-ray, PIND, etc…)
 - Continuous Improvement efforts on existing Specification(s)
 - Element Evaluation, Worst Case Circuit Analysis (WCCA)
 - Enhance Quality Assurance Requirements for Space Application grades
General Topics

- Manufacturer Presentations – Existing & New Product Line Introductions
- Radiation performance / Testing
- Review of DLA Audits for certification/re-certification of Manufacturer facilities
 - (Major DC-DC Converter supplier move 2019 (Redmond, Wa.))
 - (Major Oscillator supplier move 2020 (Culver City, Ca.))
- Review of Specifications
 - MIL-PRF-38534, General Specification for Hybrid Microcircuits
 - MIL-STD-883, Test Method Standard for Microcircuits
 - Continuous Improvement efforts on existing Specifications
 - Enhance Quality Assurance Requirements for Space Application grades
Failure Trends

Singe Decade Trending for Hybrid Microcircuits

- Based on DPA Test Results – Snapshot – Relative indicator for trending
- Used as indicator for where triage may be needed.
- Failures for various reasons (in 2019): (of the 46% that failed)
 - 38% failed Internal Visual Inspection, 14% failed X-ray
 - 15% failed Prohibited Materials, 10% Failed SEM (scanning electronic microscopy)
 - 9% failed Bond Pull, 7% RGA (residual gas analysis), 2% External Visual
 - 2% PIND
 - 2% Hermeticity
 - 2% Pre-SEM

* Data compiled from Hi-Rel Laboratories at Space Parts Working Group Conference presentation (2000-2020)
Two Decade Trending for Hybrid Microcircuits

- MIL-PRF-38534 rev(D) applicable for 1999
- MIL-PRF-38534 rev(K) applicable for 2019 (rev L released in Dec.'19)
 - Letters below: Denote what MIL-PRF-38534 revision was in effect

Percentage of Hybrid Failures by Year

* Data compiled from Hi-Rel Laboratories at Space Parts Working Group Conference presentation (2000-2020)

There is more trending analysis work to be done here!
DLA Approved QML-38534 Vendor Listing

- 31 approved vendors
- Various functions in addition to DC-DC converters
 - Optical Imaging Detectors, RF, Amplification, Opto-couplers, Motor Controllers, Digital Communications
 - Dilemma: Products with single die and few passive parts – look like MIL-PRF-38535 type product, are qualified and approved as MIL-PRF-38534

Current Specification at Revision Level - L

- Approved December 2019 – Change Summary was about 40+
 - About 2 years of work to address related issues, rewording and change coordination (for element evaluation, worst case circuit analysis, periodic conformance, etc….)
- Significant Changes
 - Major updates to Element Evaluation Tables
 - 5 year Periodicity requirement for Group C testing
 - Attempted to Address “existing inventory” for compliance to new revision level L
Current Specification at Revision Level – L (continued)

- Rev L (change highlights)
- Added new Element Evaluation tables
 - Should motivate manufacturers to use QML elements
- For Class K: “Group C inspection will be performed periodically within a maximum of five years for periodic re-qualification”.
- Wire bonding evaluation testing shall be same as assembly methods

In Progress for Rev M

- Restoring / Enhancing Worst Case Circuit Analysis (WCCA) requirements
- Rev K removed “Worst case” from “circuit design analysis” requirement
- Add WCCA parameters such as initial tolerances, temperature, aging, radiation (if applicable)
Current Actions

- **Audits**
 - 3 Class H & K Hybrid Audits since last year [NASA Representation]
 - CoViD-19 Travel Impact has limited FY2020 audits (only 2)
 (5 re-audits are in the queue for major suppliers)
 - Urgent audit of manufacturer experiencing issues (as necessary)
 - or when factory/production lines are physically moved
 - Under review during typical audit
 - Derating Plan / Stress Analysis
 - Failure Analysis (Customer returns)
 - Testing
 - Reports available on NASA SAS website
 - Working with JC-13.5 to get WCCA approach/wording changes implemented & ensure standardization of all hybrids application reliability performance.
Future Actions

- **Military Specifications**
 - MIL-STD-883 TM 2017 (Internal Inspections – Hybrids)
 - Gen Spec for Hybrids (MIL-PRF-38534) next revision level
 - Completed of Rev L work last spring/summer/fall
 - Need to consider Retrospective review of changes in order to….
 - Formulate new proposed changes to address previous unfinished business due to release date schedule pressures

- **Continuous Improvements to Selection Tool(s)**
 - Over 1500+ DC-DC converter SMD’s
 - Need to include Point of Load converters
 - Understand custom environmental performances
 - temperature, linear derating, WCCA etc….)
Thoughts Moving Forward

Where do we need to be 5 years from now.

- Vendor Audit Performance/Analysis and Prioritization
- Ensure Spec. for Hybrids (MIL-PRF-38534) is “clean”/no loop holes
- Better Selection tools for Hybrids to aid in reducing application risk
- When do we start planning for the use of COTs related to Hybrids?
- We need to ensure continued involvement from all NASA Centers!
- Application & Product failure data needed for awareness/metrics
- Need information on procurements, failures, CSI’s, lessons learned, etc.
QUESTIONS / FEEDBACK