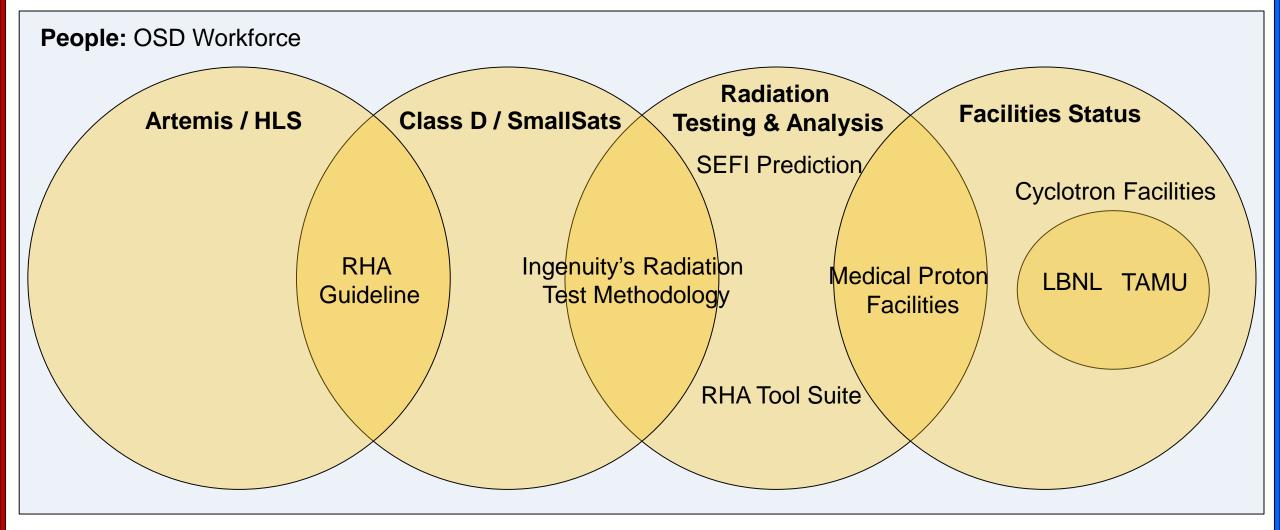


Radiation Hardness Assurance (RHA) Overview for Mission Success

Michael J. Campola, NASA Goddard Space Flight Center (GSFC)

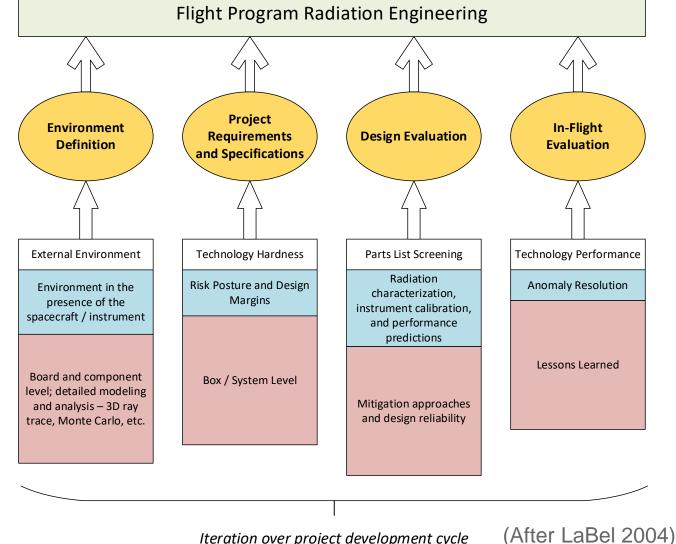
Acronyms

CME	Coronal Mass Ejection				
COTS	Commercial Off The Shelf				
DDD	Displacement Damage Dose				
EEE	Electrical, Electronic, and Electromechanical				
ELDRS	Enhanced Low Dose Rate Sensitivity				
EP	Enhanced Performance				
ESA	European Space Agency				
GCR	Galactic Cosmic Ray				
GOMAC	Government Microcircuits Applications and Critical Technologies Conference				
GSFC	Goddard Space Flight Center				
GSN	Goal Structuring Notation				
HEART	Hardened Electronics and Radiation Technology				
LEO	low earth orbit				
LET	Linear Energy Transfer				
MBMA	model based mission assurance				
MRQW	Microelectronics Reliability and Qualification Workshop				
NAND	Negated AND or NOT AND				
NASA	National Aeronautics and Space Administration				
NEPP	NASA Electronic Parts and Packaging				
NEPP ETW	NASA Electronic Parts and Packaging (NEPP) Program Electronics Technology Workshop				
NSREC	Nuclear and Space Radiation Effects Conference				


RADECS	Radiation Effects on Components and Systems				
RHA	Radiation Hardeness Assurance				
SAA	South Atlantic Anomaly				
SEE	Single Event Effects				
SEE/MAPLD	SEE-MAPLD Single Event Effects (SEE) Symposium/				
	Military and Aerospace Programmable Logic Devices (MAPLD) Workshop				
SEGR	Single Event Gate Rupture				
SEL	Single Event Latchup				
SEP	Single Event Effects Phenomena (includes SEU, SEL, SEGR and SET)				
SERESSA	School on the Effects of Radiation on Embedded Systems for Space Applications				
SET	Single Event Transient				
SEU	Single Event Upset				
SLU	Saint Louis University				
SwaP	Size, weight, and power				
TID	Total Ionizing Dose				
TID	Total Ionizing Dose				
TMR	triple-modular redundancy				
TNID	Total Non-Ionizing Dose				
UV	Ultra-Violet				

2

This Morning's Talks



Radiation Hardness Assurance (RHA) Overview

4

RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications throughout exposure to the mission space environment

(After Poivey 2007)

Iteration over project development cycle

The Job: Watch For the 'ilities

5

Survivability

- Must survive until needed
- Entire mission?
- Screening for early failures in components

Availability

- Must perform when necessary
- Subset of time on orbit
- Operational modes
- Environmental response

Criticality

- Impact to the system
- Part or subsystem function
- Mission objectives

Reliability

- Resultant of all
- Many aspects and disciplines
- Known unknowns

The People: Radiation Effects Engineers

Materials	Device Physics	Electrical Engineering	Systems Engineering	Space Physics
 Material Property degradations with radiation Energy loss in materials 	 Charge transport Device Process Dependencies Charge dependency of device operation 	 Part to part interconnections Understanding circuit response Device functions and taxonomy 	 Requirements System Level Impacts Understanding interconnections Understanding functionality 	 Space weather Environment models/modeling Radiation Sources and variability

New Space – Same Old Radiation

New mission concepts and SmallSat paradigm

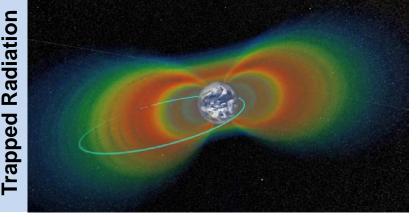
- Radiation challenges identified in the past are here to stay; adoption of new technologies are often the risk driver
- Commercial Space, Constellations, Small missions, etc. will benefit from detailed hazard definition and mission specific requirements

The need for Radiation Hardness Assurance (RHA)

- Radiation effects are a mix of disciplines, evolve with technologies and techniques
- Misinterpretation of failure modes / misuse of available data can lead to over/under design
- RHA flow doesn't change, risk acceptance needs to be tailored

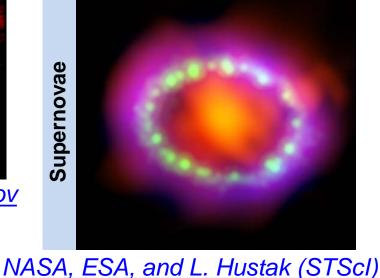
Some Top Level Resources

- NPR-7120.5 NASA Agency Program Management
- NPR-8705.4 NASA Goddard Risk Classification Guidelines //sdo.gsfc.nasa.gov (updated – class D)
- NASA-STD-8739.10 NASA Parts Assurance Standard


Activity

õ

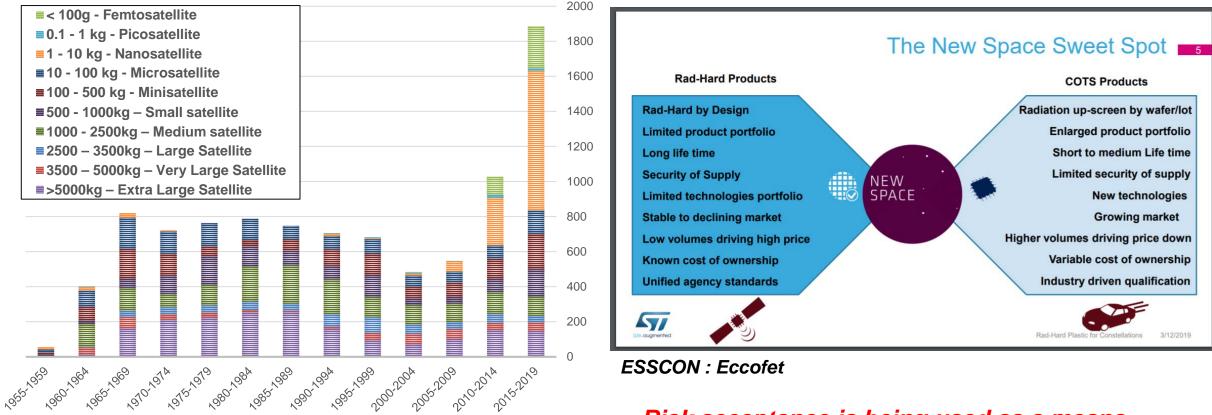
Events


Solar

6

https://www.nasa.gov/van-allen-probes

Supernovae



New Space – New Point of View

SmallSats Come in Many Sizes

Seradata SpaceTrak Data

Risk acceptance is being used as a means to enable innovation

Component Grades are Merging

7

Ecosystem is Changing, Now What?

8

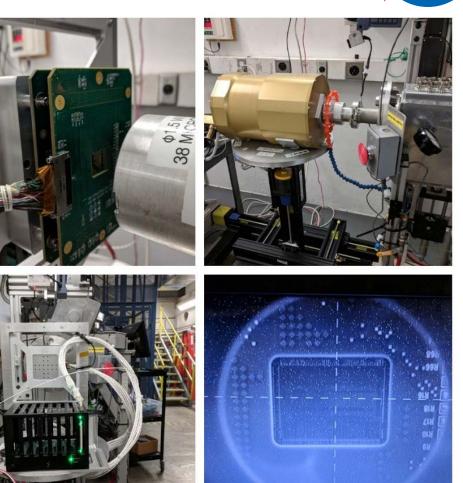
- We know we have RHA challenges, but:
 - New architectures and technologies enable progress
 - Quantifying the risk helps communicate across disciplines

Focus on risk acceptance

- Failure awareness as well as countermeasures and mitigation
 - At what level (part, card, box, mission)?
- Know when to test vs. when to model
- Tools
 - Single Event Effect Criticality Analysis (SEECA)
 - Radiation Guidelines for Notional Threat Identification and Classification (R-Gentic)
 - Model-Based Mission Assurance (MBMA)

When Do You Test? When Do You Model?

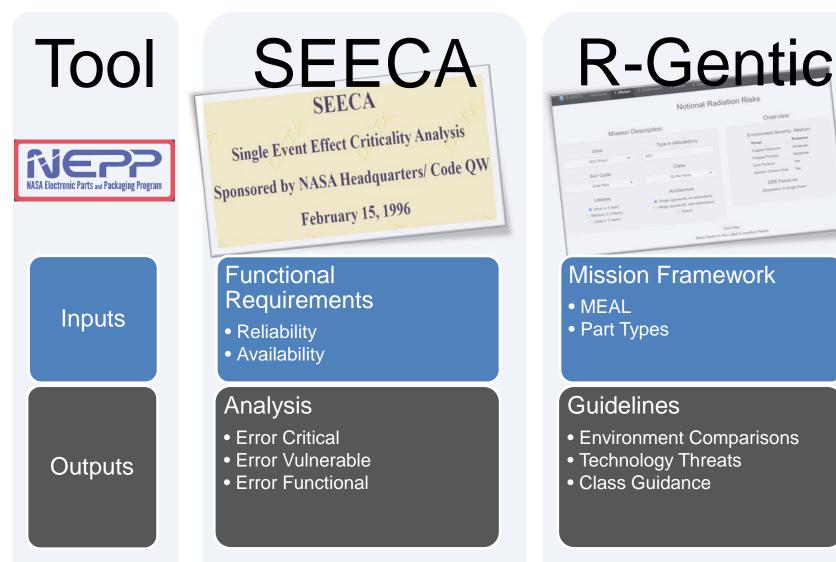
- Know your risk threshold
 - Reliability/Availability
 - Criticality of functions

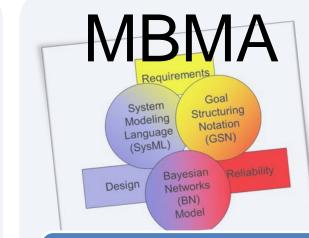

• Unknown failure modes

- New technologies should be identified early on
- Known unknowns can be carried as a risk

Fault propagation may be the problem

- This can include cumulative effects!
- Fault injection may not be able to cover the state space (see past talks from <u>Melanie Berg</u>)
- Destructive single event effects
- Can you tolerate a part replacement in your design cycle?
 - Lead times, board re-spins, etc.





RHA Tools – Getting to Risk Acceptance

10

SEAM Environment

- System Architecture
- MEAL & Requirements
- Assumptions/Models/Data

Assurance Case Study

- Requirements Verification
- Visual Arguments
- Coalesces Impacts

To be presented by Michael J. Campola at the NASA Electronic Parts and Packaging (NEPP) Program Electronics Technology Workshop (ETW), Greenbelt, MD, June 15-18, 2020.

Notional Radiation Risks

NEPP Program (OSMA)- Small Mission Efforts

11

Forward Work

- RHA Tools Integration
 - R-Gentic updates and integration into SEAM
 - Radiation 101 and R-Gentic Demo this year at SmallSat Conference (free to all!)
 - Taxonomy agreement with PMPedia
- Presentations/Publications
 - NSREC Within RHA topic, system-Level focus/highlight
 - SEECA guidance for SEE/MAPLD
- Cooperation with SSRI
 - Mission confidence framework
 - Radiation section into CubeSat 201
- Small Mission RHA Guideline

michael.j.campola@nasa.gov

THANK YOU

To be presented by Michael J. Campola at the NASA Electronic Parts and Packaging (NEPP) Program Electronics Technology Workshop (ETW), Greenbelt, MD, June 15-18, 2020.