National Aeronautics and Space Administration



# NASA EXPLORES

Efficient and Effective Requirements Development for Civil Exploration Missions

Jonathan "Jonny" Pellish NASA Electronic Parts Manager Deputy Manager, NASA Electronic Parts and Packaging (NEPP) Program 16-June-2020

To be presented by J. Pellish at the 2020 NASA Electronic Parts and Packaging (NEPP) Program Electronics Technology Workshop (ETW), June 15-18, 2020.

#### Acknowledgements

- NASA Electronic Parts and Packaging (NEPP) Program
  - <u>https://nepp.nasa.gov/</u>
- NASA Engineering and Safety Center (NESC)
  - <u>https://www.nasa.gov/nesc</u>
- NASA colleagues and community peers

#### Outline

- Why bother updating our requirements development and validation approach?
  - Decision and information velocity
  - Radiation effects has advanced considerably over the past 10-20 years
- Move towards updated guidelines for radiation hardness assurance in an era of rapid exploration expansion and electrical, electronic, electromechanical, and electro-optical (EEEE) parts and components diversity
- We also have new ways to view and decompose system safety objectives – such as goal structuring notation and model-based engineering (e.g., <u>NASA-STD-8729.1</u> [NASA Reliability & Maintainability Standard for Spaceflight and Support Systems])

#### Size, Weight, and Power (SWaP) Demands



#### Artemis Program

#### Technology expectations and exploration requirements





Human Landing Systems & Artemis-Generation Spacesuits



Gateway, Orion, and the Space Launch System

#### Radiation Hardness Assurance (RHA) Guideline Development



#### Complete & Synchronous System View

#### Mission

Lifetime

#### Environment

#### Application

 Comprehension requires a complete synchronous vision of how technologies are to be used effectively

- Considerations summarized in these elements allow designers to effectively choose EEEE parts for their best performance in a given architecture
- Emphasizing one of these elements without understanding the others can compromise the integrity and performance of the parts and mission success

Images Credit: NASA

Adapted from NASA Technical Report TM-2018-220074

#### Guideline Development for Avionics RHA

- Support the Artemis Program's objectives for human-rated vehicle functionality beyond low earth orbit – and provide benefits to NASA's other mission directorate lines of business
- Document current state-of-the-practice and evolution over past two decades
- Focus on defining radiation effects' impacts in terms of system availability & reliability to provide consistency
- Incorporate recent developments in environment specification and probability of success calculations – such as...
  - M. A. Xapsos et al., "Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology," in *IEEE Trans. Nucl. Sci.*, vol. 64, no. 1, pp. 325-331, Jan. 2017.
- Reinforce existing and new methodologies for TID, TNID, and single-event effects testing and analysis, including stipulations for commercial-off-the-shelf and new technologies

#### **Proposed RHA Guideline Contents**



#### SEE Criticality Analysis (SEECA)

|                               | 431-KEF-000273                                     |
|-------------------------------|----------------------------------------------------|
|                               | Single Event Effect Criticality Analysis           |
|                               | Sponsored by NASA HQ/Code QW<br>February 16, 1996  |
| Acrepanties and dministration | Goddard Space Flight Center<br>Greenbelt, Maryland |

https://radhome.gsfc.nasa.gov/radhome/papers/seecai.htm

- Blast from past, but perhaps remains more relevant than ever
- SEECA fuses radiation effects from the part- to the system-level
- "Criticality classes" are unique in that they capture the consequence of unintended operation at the system-level
  - Bottom-up and top-down linkage is essential for good engineering communication
  - Can help more easily address both availability & reliability constraints



### Summary

- We must evolve with our mission requirements and engineering intents – in the face of ever-increasing challenges
- Radiation hardness assurance can leverage prior art and recent innovations to yield new frameworks that support new mission objectives

## EXPLORE HUMANSinSPACE

Leading Discovery, Improving Life on Earth

#### Acronyms

| Abbreviation      | Definition                                                     |
|-------------------|----------------------------------------------------------------|
| EEEE              | Electrical, electronic, electromechanical, and electro-optical |
| IEEE              | Institute of Electrical and Electronics Engineers              |
| MBMA              | Model-Based Mission Assurance                                  |
| NASA              | National Aeronautics and Space Administration                  |
| NEPP              | NASA Electronic Parts and Packaging (Program)                  |
| NESC              | NASA Engineering and Safety Center                             |
| RHA               | Radiation Hardness Assurance                                   |
| SEE               | Single-Event Effects                                           |
| SEECA             | SEE Criticality Analysis                                       |
| TID               | Total Ionizing Dose                                            |
| TNID              | Total Non-Ionizing Dose                                        |
| Trans. Nucl. Sci. | Transactions on Nuclear Science                                |