NEPP studies on The Reliability of Flip Chip Solder Joints and 2.5/3D Packaging

Eric J Suh
Joseph Riendeau
Jet Propulsion Laboratory, California Institute of Technology

Scott Popelar
Rich Measmer
Cobham Advanced Electronic Solutions

NASA Electronic Parts and Packaging Program (NEPP)
2020 Annual NEPP Electronic Technology Workshop (ETW)
June 17th, 2020
Introduction

- New NEPP task with Georgia Tech Packaging Research Center on 2.5/3D packaging
- This presentation
 - Implementation considerations of 2.5D packaging in space applications
 - What we can leverage from previous NEPP tasks and existing studies in terms of reliability
- “Heterogeneous Integration”
 - Broad definition: “Using a packaging technology to integrate dissimilar chips, photonic devices, or components”
 - Does not necessarily mean 2.5D/3D packaging.

(*John Lau, Chip Scale Review, 2019)
2.5/3D Level Heterogeneous Integration

• Heterogeneous Integration
 • In the context of describing 2.5D/3D packaging level of technology
 • Integrating dissimilar chips using a packaging technology with I/O density higher than organic substrate. (Feature size smaller than organic substrate, or 3D die)
 • Technology drivers:
 • **High bandwidth** between the processor and the HBM.
 • Integration of dies and chiplets with diverse IPs.
 • Improvement of **yield** by integrating smaller segments of die (Virtex 7).
Prerequisite Technologies for 2.5D Parts for Space: 1. Substrate

1. Substrate

- Ceramic to Organic:
 - Organic substrate can support the feature size
 - Organic substrate can potentially enable better signal speed.
 - NEPP-Cobham collaboration task: JEDEC working group in progress for organic flip chip. (Lead: Scott Popelar)

<table>
<thead>
<tr>
<th></th>
<th>Ceramic (HTCC)</th>
<th>Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bump Pad Diameter (µm)</td>
<td>~150</td>
<td>>60</td>
</tr>
<tr>
<td>Bump Pad Pitch (µm)</td>
<td>~250</td>
<td>>120</td>
</tr>
<tr>
<td>Trace Line Width (µm)</td>
<td>100~125</td>
<td>9~15</td>
</tr>
<tr>
<td>Trace Line Spacing (µm)</td>
<td>100~125</td>
<td>12~15</td>
</tr>
<tr>
<td>Via Diameter (µm)</td>
<td>125~200</td>
<td>50~65 (12mil for core)</td>
</tr>
<tr>
<td>Via Pitch (µm)</td>
<td>250~640</td>
<td>100~125 (40mil for core)</td>
</tr>
<tr>
<td>Dielectric Const.</td>
<td>8.5~10</td>
<td>3.2~4.8</td>
</tr>
<tr>
<td>Dielectric Loss Angle</td>
<td>0.0005~0.007</td>
<td>0.019~0.248</td>
</tr>
<tr>
<td>Trace Sheet Resistance (mΩ/sq)</td>
<td>8~17</td>
<td>3</td>
</tr>
</tbody>
</table>
2. Solder Bump Technology
(between interposer and substrate)

- Current state of art for space parts
 - Ceramic packages
 - Class-Y (Non-hermetic), Class-V (Hermetic))
 - C4 bump (~250µm pitch)

- Organic substrate to die/interposer
 1) C4 bump
 2) Cu pillar bump (smaller pitch size than regular C4)
 - Organic package offers smaller feature size than ceramic.

<table>
<thead>
<tr>
<th></th>
<th>Ceramic (HTCC)</th>
<th>Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bump Pad Diameter (µm)</td>
<td>~150</td>
<td>>60</td>
</tr>
<tr>
<td>Bump Pad Pitch (µm)</td>
<td>~250</td>
<td>>120</td>
</tr>
</tbody>
</table>
Prerequisite Technologies for 2.5D Parts for Space: 2. Solder Bump

Solder bump reliability
(between interposer and substrate)

• Extensive studies through 3 NEPP – Cobham collaboration tasks.
• Solder bump reliability between single layer Si die and substrate (regular flip chip)
 • Test to failure
Variables Covered in Previous NEPP Tasks

• Die Size
 • 5x5, 10x10, 15x15, 20x20 mm
 • Level of stress in bumps

• Substrate material
 • Ceramic vs Organic
 • CTE and stiffness
 • Warping behavior

• Underfill materials
 • 3 different underfill
 • CTE, Tg, modulus, adhesion, etc

• Bump types
 • C4 vs Cu pillar – different size, pitch, and geometry

• Effect of environment exposure / pre-conditioning
 • Humidity, long term vacuum, multiple reflow, electromigration

• Main failure initiator or organic flip chips during temp cycling:
 • Fatigue delamination of underfill, causing solder joint failure.

• Organic C4 and Cu pillar can be as reliable or more reliable than Class-Y, if right underfill material is used with good workmanship.
 • Finding the right underfill by analysis is very difficult.
• Interactions of different materials at different stack-up and geometry

• Interposer thickness and stacked die.
 • Interposer is thinner than flip chip die.

• Effect of substrate warping due to the presence of PCB and extra dies.
 • Substrate inherently warps due to CTE mismatch with die.
 • Presence of PCB affects the substrate warping.

• Effect of using NCP/NCF instead of underfill.
2. Solder Bump Technology
 (Between dies and interposer)
 • Fine pitch bump technologies.
 1) C2 Copper pillar bump
 2) Thermocompression bump
Prerequisite Technology for 2.5D Parts for Space: 2. Solder Bump

- **C4 (Controlled Collapse Chip Connection)**
 - Reflow

- **C2 (Chip Connection)**
 - Not enough solder volume to self-align.
 - Reflow or thermocompression bonding.

- **Thermocompression bump.**
 - Necessary technology for microbumps ~50µm pitch.
 - May need to use NCP/NCF instead of underfill for TC bumps.
 - Need different infrastructure and material than flip chip bumps.

Thermocompression bumps are sometimes used between die and substrate.
3. Pb-free Technology

- Microbumps are Pb-free
- Do we need “0%” underfill/NCF void bridging 2 or more bumps requirement for whisker prevention?
Heterogenous Integration Technologies and Die Screening/Burn-in (1/3)

• Screening / Burn-in for heterogenous integrating multiple dies.
 • Burn-in **before or after** integration?
 • “Integrated” dies
 • Electrical : Single entity
 • Reliability : “Weakest link” situation
 • Integration first, burn-in later:
 • How do we know if all the dies are burned-in to the right parameter?
 • If one die fails during burn-in, you lose all dies.
Chip-first vs Chip-last

- Chip-first completes package or interposer after dies are already attached.
 1) Attach dies to partially built interposer (wafer) or fan-out package
 2) Complete the interposer or fan-out package

- Even packages with very similar structures are built with different process flow.
 - The same technology can also have 2 versions.

(Should there be different QML flows for chip-first and chip-last?)
Heterogenous Integration Technologies and Die Screening/Burn-in (2/3)

- Integrating already screened and burned-in dies via chip-first:
 - Schedule & cost are already spent on screening and burn-in.
 - Risk in attaching “known good dies” to “may or may not become good interposer/package”.

- Although chip-first has risk associated with integrating known good dies, some chip-first technologies have advantages.
 - ex) CoWoS: In customer’s perspective: ease in handling/assembly, more choice of packaging shops, can attach to a HDI board.

- When integrating already screened and burned-in dies, chip-first vs chip-last needs to be evaluated.
 - Yield/quality risk during packaging vs schedule and cost

<table>
<thead>
<tr>
<th>Technology</th>
<th>Si interposer or stacked die</th>
<th>Glass Interposer</th>
<th>Organic Interposer</th>
<th>Si BEOL + Organic sub</th>
<th>Fan-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoWoS</td>
<td>Glass Interposer</td>
<td>APX</td>
<td>RDL Interposer</td>
<td>EMIB</td>
<td>SWIFT</td>
</tr>
<tr>
<td>Foveros</td>
<td>Glass Interposer</td>
<td>i-THOP</td>
<td>RDL Interposer</td>
<td>InFO_PoP</td>
<td>InFO_oS</td>
</tr>
<tr>
<td>3D SoC</td>
<td>Glass Interposer</td>
<td>RDL Interposer</td>
<td>RDL Interposer</td>
<td>FOCoS</td>
<td></td>
</tr>
<tr>
<td>(3D)</td>
<td>Glass Interposer</td>
<td>RDL Interposer</td>
<td>RDL Interposer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Company | TSMC | Intel | Georgia Tech Consortium / Hynix | Kyocera | Shinko | Samsung | Intel | Amkor | TSMC | TSMC | ASE |

- CoWoS: Easier to assemble
- Microbump attach
- Easier to standardize
- C4 attach
2.5D Package Study Direction of Current NEPP Task

- Implementing heterogenous technologies for high reliability space application:
 - **Fan-out:**
 - It is not certain same QML flow can be applied to all fan-out packages.
 - Difference between each vendors’ technology is large.
 - Rate of technology evolution may not be compatible with space parts life cycle.
 - \((\text{Time scale of technology lifespan}) \leq (\text{time required for QML qual})\) ?
 - **EMIB:**
 - Intel-specific technology. May not be suitable for chiplet type integration.
 - **Interposer-based chip-last packaging technologies:**
 - Easier to standardize
 - Vendor process change cycle can be matched to space parts.
 - Difference between vendors can be small enough to setup QML flow.

Table: Fan-out Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Company</th>
<th>Glass Interposer</th>
<th>Organic Interposer</th>
<th>Si BEOL + Organic sub</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3D SoC (3D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoWoS</td>
<td>TSMC</td>
<td>Glass Interposer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foveros (3D)</td>
<td>Intel</td>
<td>3D SoC (3D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D SoC (3D)</td>
<td>Georgia Tech Consortium / Hynix</td>
<td>Glass Interposer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX</td>
<td>Kyocera</td>
<td>i-THOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDL Interposer</td>
<td>Shinko</td>
<td>Samsung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMIB</td>
<td>Intel</td>
<td>EMIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWIFT</td>
<td>Amkor</td>
<td>InFO_PoP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InFO_oS</td>
<td>TSMC</td>
<td>InFO_oS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOCoS</td>
<td>TSMC</td>
<td>FOCoS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEPP Glass Interposer Task

• Si interposer issues
 • Supply chain availability issue and high cost
 • Triggered development of alternate heterogenous integration technologies.
 • The supply chain availability is also a real issue for the space industry.

• Glass interposer
 • Can resolve the supply chain availability issue of Si interposer.

• Study will focus on reliability
 Ex) How different elements in 2.5/3D packaging stack-up interacts with each other and creates potential reliability issues.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Company</th>
<th>Si interposer or stacked die</th>
<th>Glass Interposer</th>
<th>Organic Interposer</th>
<th>Si BEOL + Organic sub</th>
<th>Fan-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoWoS</td>
<td>TSMC</td>
<td>3D SoC (3D)</td>
<td>Glass Interposer</td>
<td>APX i-THOP</td>
<td>EMIB</td>
<td>SWIFT</td>
</tr>
<tr>
<td>Foveros (3D)</td>
<td>Intel</td>
<td>3D SoC (3D)</td>
<td></td>
<td>RDL Interposer</td>
<td></td>
<td>InFO_PoP</td>
</tr>
<tr>
<td>3D SoC (3D)</td>
<td>Georgia Tech Consortium / Hynix</td>
<td></td>
<td>Kyocera</td>
<td></td>
<td>Intel</td>
<td>InFO_oS</td>
</tr>
<tr>
<td>3D SoC (3D)</td>
<td>Shinko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOCoS</td>
</tr>
</tbody>
</table>
Example of CTE/warpage Effect on a 3D Device

• Cross-section were taken after TC testing of 3D memory module (note substrate in this case is a typical organic substrate used for BGA devices)

• Complete cracks were found at Si to substrate between 500 and 1000 cycles of -55 to 125°C

• Device bump failed after board level failure, but at less than 1000 cycles bump reliability does not show margin usually expected
3D Device Microbump Cracking and Other Package Types

- 3D DDR4
- Molding compound
- Organic Substrate
- Fan-out
- PCB

2.1D Approach
- Interposer
- PCB

Microbump
Summary of Interposer Influence on 2.5/3D Reliability

<table>
<thead>
<tr>
<th>Element Concern</th>
<th>Failure Mechanism</th>
<th>Influence of Interposer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Die</td>
<td>performance impacted by device warpage</td>
<td>CTE; modulus; and flatness of interposer</td>
</tr>
<tr>
<td>Thermal</td>
<td>multiple die or stacked die increase heat and increased thermal path</td>
<td>Thermal conductivity of interposer; size/density of copper through vias and copper distribution</td>
</tr>
<tr>
<td>Through vias</td>
<td>Crack in copper (open), crack in interposer dielectric (possible shorts)</td>
<td>through via formation process, properties of copper; adhesion/barrier layers</td>
</tr>
<tr>
<td>Interposer RDL</td>
<td>Electrical Leakage</td>
<td>quality and behavior of passivation, consistency of spacing; adhesion of RDL; cleanliness</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>Poor photolithography process; poor formation of vias; high stresses from poor material/process combinations</td>
</tr>
<tr>
<td>Chip to chip attach</td>
<td>warpage impacts on attach for chip last approaches</td>
<td>CTE; modulus; and flatness of interposer</td>
</tr>
<tr>
<td>C4/Copper pillar</td>
<td>cracks in the C4/copper pillar attach of die to interposer</td>
<td>warpage; CTE-modulus-reflow combined effects; underfill/NCP with interposer/die properties combined effects</td>
</tr>
<tr>
<td>Board level</td>
<td>Cracks in BGA due to warpage of device</td>
<td>CTE; modulus; material/stackup combined effects on warpage</td>
</tr>
</tbody>
</table>

- Interposer impact on reliability can viewed from 2 aspects
 1) Is the interposer (include though vias and RDL) reliable when subjected to manufacturing and environmental conditions?
 2) How will the intrinsic properties and design of the interposer impact the reliability of the 2.5/3D product?
Some Measurements of Warpage with Different Interposers

- Interposer CTE is a big driver of warpage
 - This is critical to both board level and part level reliability

- Interposer stiffness is a key factor on warpage
 - Can vary warpage up to 2x over reflow

- Warpage of device after attached to board is significantly changed
 - Test vehicles should be attached to a circuit board
Testing Interposer Reliability in 2.5/3D Products

<table>
<thead>
<tr>
<th>Element Concern</th>
<th>Failure Mechanism</th>
<th>Influence of Interposer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Die</td>
<td>performance impacted by device warpage</td>
<td>CTE; modulus; and flatness of interposer</td>
</tr>
<tr>
<td>Thermal</td>
<td>multiple die or stacked die increase heat and increased thermal path</td>
<td>Thermal conductivity of interposer, size/density of copper through vias and copper distribution</td>
</tr>
<tr>
<td>Through vias</td>
<td>Crack in copper (open), crack in interposer dielectric (possible shorts)</td>
<td>through vias formation process, properties of copper; adhesion/barrier layers</td>
</tr>
<tr>
<td>Interposer RDL</td>
<td>Electrical Leakage</td>
<td>quality and behavior of passivation, consistency of spacing; adhesion of RDL; cleanliness</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>Poor photolithography process; poor formation of vias; high stresses from poor material/process combinations</td>
</tr>
<tr>
<td>Chip to chip attach</td>
<td>warpage impacts on attach for chip last approaches</td>
<td>CTE; modulus; and flatness of interposer</td>
</tr>
<tr>
<td>C4/Copper pillar</td>
<td>cracks in the C4/copper pillar attach of die to interposer</td>
<td>warpage; CTE-modulus-reflow combined effects; under fill/NCP with interposer/die properties combined effects</td>
</tr>
<tr>
<td>Board level</td>
<td>Cracks in BGA due to warpage of device</td>
<td>CTE; modulus; material/stackup combined effects on warpage</td>
</tr>
</tbody>
</table>

Interposer should have standalone test data for design rule set, material, and manufacturing flow.

Modelling is key to understanding interposer impact (which is only one of several major elements). Modelling should have a similar test vehicle to validate. Test vehicle should have functional die with similar technology to help detect such aspects of cracking of low k dielectric or thermal effects.

A set of test vehicles and analysis is needed to have an effective packaging design kit.
Future Work Focus Area

• Understand from first principles stresses and warpage caused by interposer, underfill, lid, and manufacturing flow process to help define a design kit for NASA 2.5/3D packaging.
 • Modeling and experimental studies on interactions between interposer, underfill, lid and manufacturing process.
 • Variables: design and material
• Better understanding on microbump process and reliability.
 • C2 bump
 • Thermocompression bump
• Screening & in-process control methodology for reliability.