Greetings from Georgia Tech

3D Systems Packaging Research Center

Madhavan Swaminathan John Pippin Chair in Microsystems Packaging & Electromagnetics School of Electrical & Computer Engg. School of Materials Science & Engg. Director, 3D Systems Packaging Research Center (PRC)

Georgia Institute for Electronics Tech ∦and Nanotechnology

Outline

- □ PRC An Overview
- Heterogeneous Integration
- □ Glass Interposer Technology
- □ Glass Interposers for Space Applications
- □ Summary

2

Packaging Research Center (PRC) Graduated NSF Engineering Research Center 26 Faculty (ECE, MSE, ChE, ME) 11 Staff (Research & Admin) 40+ G Students (+ UG) 33 Collaborators (Industry/Govt. Labs) kaging & 3 Visiting Engineers on Campus

Advanced Packaging & System Integration

Package-integrated antenna Through-package via

Georgia Institute of Technology

June 16, 2020

- More efficient architectures & advanced packaging (next 10 years)
- New materials & devices (20+ years)
- New models for computation (Future ex: quantum computing)

Future of Computing (cont.)

Architectural innovations

- Use of <u>Accelerators</u> (chiplets in-between a CPU & ASIC with IP Reuse)
- □ Extreme Heterogeneity
 - <u>Smaller Dies</u> from different advanced process nodes to reduce die cost
- Data movement
 - Low Energy/Bit (EPB) with <u>high</u> Bandwidth density

Georgia Tech

June 16, 2020

6

Heterogeneous Integration

Multitude of chips from different process nodes, wafer sizes, foundries & domains

Integrated Substrate: >10,000 mm²

Compute

- Electronics
 - Parallel I/O
 - High BW Density
 - <3mm length</p>
- Photonics
 - Serial I/O
 - High BW
 - >200mm length
- Wireless
- Massive MIMO
 - High Data Rate
 - >20m

HETEROGENEOUS INTEGRATION ENABLES CONTINUATION OF MOORE'S LAW

High Density Connectivity between Chips Chip First Het Sink Het Sink CPU/GPU chiplet Crass CPU/GPU chiplet Cass CPU/GPU chiple

Board

L/S/Via = 1/1/1 um

Semi-Additive Process

1um/1um 2um/2um 3um/3um

Microvia

0.7um/5um pitch

Assembly bump characterization 35 µm pitch, 20 µm dia Cu-SnAg bumps

Courtesy: Siddharth Ravichandran, PRC Fuhan Liu, PRC

Georgia Institute of Technology

10

□ Sn-based lead-free solders are reaching their limits in pitch scalability, power handling capability and creep resistance → direct Cu-Cu bonding as next interconnection node

□ Non-coplanarities are a key bottleneck for development of a universal assembly solution

Nanoporous-Cu Film Sintering Assembly Pitch < 20µm

80

Low-cost synthesis by selective etching

Courtesy: Vanessa Smet, PRC

Nanocopper ligament size,

30

Georgia Institute of Technology

June 16, 2020

Modulus, GPa

30

Comparison of Glass & Silicon Interposer

- Simulation settings:
- Rise/Fall Time = 10 %UI TX Impedance = 50 Ω
- RX termination at μ -bumps

- Channel length = 6 mm
- Bump Pitch/Diameter = 55/20 um
- Line Width/Spacing/Thickness = 2 um

Energy Per Bit & Bandwidth Density

	3D IC w/ TSV [Zhang, et al. '18]	Monolithic 3D [Zhang, et al. '18]	3D GPE (35 µm Pitch)
Bandwidth density	1.76 Tbps/mm ²	12.625 Tbps/mm [*]	4.65 Tbps/mm ²
ESD capacitor	50fF	50fF	0.5 pF
E _{bit} (no ESD)	76.2 fJ/bit	3.7 fJ/bit	11.2 fJ/bit
E _{bit} (with ESD)	176.2 fJ/bit	135.1 fJ/bit	1.01 pJ/bit

GPE: Glass Panel Embedded

- E_{bit} only includes interconnect. The ESD capacitances based on model assumptions add 1 pJ/bit
- E_{bit} increases with decreasing pitch due to increased mutual capacitance between IOs

Computing – Photonics Interconnects

□ Fine Pitch Cu Interconnects too lossy

Photonics in the Module

Emerging Technology

Grating
Grating
Coupling
Others
Waveguide
Modulator
9 dB
3%
0.7 dB

Interconnect Penalty for 50 mm (8x14G)

Our (PRC) Focus

Metric	SERDES ^[5]	IBM Terabus ^[6]	Proposed work ^(estimated)
Type of bus	Electrical (Cu on FR4)	Optical (Silicone)	Optical (BCB)
Energy consumption	23.2 pJ/bit	4.65 pJ/bit	≤ 1.2 pJ/bit
BER	10 ⁻⁹	10 ⁻¹²	10 ⁻¹²
distance	1 cm	36 cm	5 cm
Data rate/lane	40 Gb/s	160 Gb/s	896 Gb/s

Georgia Institute of Technology

High Data Rate Wireless

Higher data rate requires larger bandwidth (1Gbps Vs 10Gbps)
 5G and sub-THz (6G)

Antenna in Package is essential

Georgia Tech

Low Loss Interconnects

- Coplanar Waveguide (CPW) & Microstrip
- 0.2dB/mm@100GHz and 0.25dB/mm@140GHz
- Comparable to LCP[2-3], Astra[4], Rogers [5] and Teflon[4]
- Microstrip: 0.076dB/mm (26-30GHz) Sum ABF Sum Copper Glass 100um ISum ABF Sum Copper

Georgia Institute of Technology

Georgia Tech

(b)

(c)

Antenna in Package (AiP) – 5G

Georgia Institute of Technology

June 16, 2020

Georgia Tech

- □ 2x2 patch antenna elements top layer
- **2**-D Butler matrix bottom layer
- Feed using vias
- □ Gain of each element: ~6dBi

- **\Box** Element spacing: 1.1mm (λ /2 @140GHz)
- 20% Bandwidth (goal)
- □ Total area: <u>3mm x 3mm</u>

Kai-Qi Huang, GT-PRC. June 16, 2020

Georgia Institute of Technology

Reliability & Integration

Distribution of accumulated plastic strain in the second last solder ball for high CTE (9 ppm/K) glass substrate

Direct interposer assembly on to Printed Wiring Board

Tuned CTE for Glass Interposer maximizes Chip & Board reliability
Eliminates ONE level of packaging

Usage vs. Accelerated Testing Various Applications

AEROSPACE

AUTOMOTIVE

3D Systems Packaging Research Center

MILITARY

MEDICAL

COMMUNICATIONS

Georgia Institute of Technology

June 16, 2020

Field Conditions—Aircraft Z

Operating Temperatures:

Diurnal Temperatures:

Case #	No. of Occurrences	$T_{initial} \!\!=\!\! T_{min}\text{, }^{\circ}\!C$	T_{max} , °C	T _{ave} , °C	ΔT, °C
1	30	-55.0	85	15.0	140.0
2	60	-42.5	85	21.3	127.5
3	150	-32.5	85	26.3	117.5
4	155	-22.5	85	31.3	107.5
5	180	-12.5	85	36.3	97.50
6	950	-2.5	85	41.3	87.50
7	1700	7.5	85	46.3	77.50
8	1800	17.5	85	51.3	67.50
9	950	27.5	85	56.3	57.50
10	20	37.5	85	61.3	47.50
11	20	49.0	85	67.0	36.00
Case #	No. of Occurrences	T _{initial} =T _{min} , °C	T _{max} , °C	T _{ave} , °C	ΔT, °C
Case #	No. of Occurrences 10	T _{initial} =T _{min} , °C -55.0	T _{max} , °C -50.00	T _{ave} , °C -52.25	ΔT, °C 5.00
Case # 1 2	No. of Occurrences 10 20	T _{initial} =T _{min} , °C -55.0 -42.5	T _{max} , °C -50.00 -31.0	T _{ave} , °C -52.25 -36.75	ΔT, °C 5.00 11.50
Case # 1 2 3	No. of Occurrences 10 20 20	T _{initial} =T _{min} , °C -55.0 -42.5 -32.5	T _{max} , °C -50.00 -31.0 -19.0	T _{ave} , °C -52.25 -36.75 -25.75	ΔT, °C 5.00 11.50 13.50
Case # 1 2 3 4	No. of Occurrences 10 20 20 20 20	T _{initial} =T _{min} , °C -55.0 -42.5 -32.5 -22.5	T _{max} , °C -50.00 -31.0 -19.0 -7.00	T _{ave} , °C -52.25 -36.75 -25.75 -14.75	ΔT, °C 5.00 11.50 13.50 15.50
Case # 1 2 3 4 5	No. of Occurrences 10 20 20 20 70	T _{initial} =T _{min} , °C -55.0 -42.5 -32.5 -22.5 -12.5	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75	ΔT, °C 5.00 11.50 13.50 15.50 17.50
Case # 1 2 3 4 5 6	No. of Occurrences 10 20 20 20 70 520	T _{initial} =T _{min} , °C -55.0 -42.5 -32.5 -22.5 -12.5 -2.5	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00 15.5	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75 6.50	ΔT, °C 5.00 11.50 13.50 15.50 17.50 18.00
Case # 1 2 3 4 5 6 7	No. of Occurrences 10 20 20 20 20 520 950	$\begin{array}{c} T_{initial} = T_{min}, \ ^{\circ}C \\ -55.0 \\ -42.5 \\ -32.5 \\ -22.5 \\ -12.5 \\ -2.5 \\ -2.5 \\ 7.5 \end{array}$	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00 15.5 25.5	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75 6.50 16.50	ΔT, °C 5.00 11.50 13.50 15.50 17.50 18.00 18.00
Case # 1 2 3 4 5 6 7 8	No. of Occurrences 10 20 20 20 520 950 1050	$\begin{array}{c} T_{initial} = T_{min}, \ ^{\circ}C \\ -55.0 \\ -42.5 \\ -32.5 \\ -22.5 \\ -12.5 \\ -2.5 \\ 7.5 \\ 17.5 \\ 17.5 \\ \end{array}$	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00 15.5 25.5 38.0	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75 6.50 16.50 27.75	ΔT, °C 5.00 11.50 13.50 15.50 17.50 18.00 18.00 20.50
Case # 1 2 3 4 5 6 7 8 9	No. of Occurrences 10 20 20 20 20 520 950 1050 500	$\begin{array}{c} T_{initial} = T_{min}, \ ^{\circ}C \\ -55.0 \\ -42.5 \\ -32.5 \\ -22.5 \\ -12.5 \\ -2.5 \\ -12.5 \\ 17.5 \\ 17.5 \\ 27.5 \end{array}$	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00 15.5 25.5 38.0 57.0	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75 6.50 16.50 27.75 42.25	ΔT, °C 5.00 11.50 13.50 15.50 17.50 18.00 18.00 20.50 29.50
Case # 1 2 3 4 5 6 7 8 9 10	No. of Occurrences 10 20 20 20 70 520 950 1050 500 20	$\begin{array}{c} T_{initial} = T_{min}, \ ^{\circ}C \\ -55.0 \\ -42.5 \\ -32.5 \\ -22.5 \\ -12.5 \\ -2.5 \\ 7.5 \\ 17.5 \\ 17.5 \\ 27.5 \\ 37.5 \\ \end{array}$	T _{max} , °C -50.00 -31.0 -19.0 -7.00 5.00 15.5 25.5 38.0 57.0 71.0	T _{ave} , °C -52.25 -36.75 -25.75 -14.75 -3.75 6.50 16.50 27.75 42.25 54.25	ΔT, °C 5.00 11.50 13.50 15.50 17.50 18.00 18.00 20.50 29.50 33.50

Georgia Institute of Technology

Technical Challenges

- Aggravated solder strains
 - Large CTE mismatch
 - Large package sizes
 - Pitch reduction
 - Aggravated warpage
- Balanced fatigue & drop performance
- Additional constraints
 - SMT-compatibility
 - Reworkability
 - System-level reliability

Glass Interposer Reliability for Space Collaboration with JPL

Warpage Measurements

Measure warpage using shadow moiré
Collect data over temperature range based on assembly and operating temperatures
Use experimental data to validate model, then use model for analysis and prediction

Process Modeling & Prediction from First Principles

Dicing

- Model to fully simulate dicing (contact support at bottom, partially cut from next coupon) showed < 2% difference in energy release rate at defect crack tip.
- Critical energy release rate of glass is substantially lower in the presence of water (2 J/m²) than in air (8 J/m²).
- Thicker build-ups have more stress, which causes failure at smaller defect sizes. So thinner build-ups should be a solution.

TCT Reliability

Georgia Institute of Technology

June 16, 2020

Thank You

www.prc.gatech.edu madhavan@ece.gatech.edu

Georgia Institute of Technology

June 16, 2020