Greetings from Georgia Tech

3D Systems Packaging Research Center

Madhavan Swaminathan John Pippin Chair in Microsystems Packaging & Electromagnetics School of Electrical & Co **School of Materials Science & E** *Director, 3D Systems Packaging Research Center (PRC)*

Georgia | Institute for Electronics
Tech ∐and Nanotechnology

Outline

- **Q PRC An Overview**
- **□ Heterogeneous Integration**
- **□ Glass Interposer Technology**
- **□ Glass Interposers for Space Applications**
- **□ Summary**

Graduated NSF Engineering Research Center 26 Faculty (ECE, MSE, ChE, ME) 11 Staff (Research & Admin) 40+ G Students (+ UG) 33 Collaborators (Industry/Govt. Labs) 3 Visiting Engineers on Campus **Packaging Research Center (PRC)**

Advanced Packaging & System Integration

Package-integrated antenna Through-package via Microvia Build-up dielectric

3 Georgia Institute of Technology

- More efficient architectures & advanced packaging (next 10 years)
- New materials & devices (20+ years)
- New models for computation (Future ex: quantum computing)

Future of Computing (cont.)

□ Architectural innovations

- Use of Accelerators (chiplets in-between a CPU & ASIC with IP Reuse)
- **□ Extreme Heterogeneity**
	- Smaller Dies from different advanced process nodes to reduce die cost
- Data movement
	- Low Energy/Bit (EPB) with high Bandwidth density

Georgia Tech

6 Georgia Institute of Technology

Heterogeneous Integration

 \Box Multitude of chips from different process nodes, wafer sizes, foundries & domains

Compute

- **Electronics**
	- Parallel I/O
	- High BW Density
	- <3mm length
- o Photonics
	- Serial I/O
	- High BW
	- >200mm length
- Wireless
	- o Massive MIMO
		- High Data Rate
		- >20m

HETEROGENEOUS INTEGRATION ENABLES CONTINUATION OF MOORE'S LAW

High Density Connectivity between Chips Georgia Tech Chip First KAGINO CENTER High-density RDL characterization • 2-5 µm microstrip lines, 3 different dK • 2-5 µm L/S coupled MS lines CPU/GPU chiplet CPU/GPU chiplet Glass $0.25 - 5$ mm long lines **Board** Chip-PKG Microvia characterization • 3-10 µm via, 7-20 µm pad Impact of pad size, via diameter, via pitch $L/S/V$ ia = 1/1/1 um Semi-Additive Process **Microvia** 0.7 um $\frac{0.7 \mu m}{4.3 \mu m}$ $5.0 \mu m$ Assembly bump characterization • 35 µm pitch, 20 µm dia Cu-SnAg bumps

Courtesy: Siddharth Ravichandran, PRC Fuhan Liu, PRC

10 Georgia Institute of Technology

0.7um/5um pitch

 $15_{µm}$

June 16, 2020

1um/1um 2um/2um 3um/3um

 Sn-based lead-free solders are reaching their limits in pitch scalability, power handling capability and creep resistance \rightarrow **direct Cu-Cu bonding** as next interconnection node

Non-coplanarities are a key bottleneck for development of a universal assembly solution

Nanoporous-Cu Film Sintering Assembly Pitch < 20µm

Low-cost synthesis by selective etching

Courtesy: Vanessa Smet, PRC

40 50

Nanocopper ligament size, nm

80 90

12 Georgia Institute of Technology

June 16, 2020

40 Modulus, GPa

30

 20

Comparison of Glass & Silicon Interposer

- Simulation settings:
- Rise/Fall Time = 10 %UI
- TX Impedance = 50 Ω
- RX termination at μ -bumps
- Channel length = 6 mm
- Bump Pitch/Diameter = 55/20 um
- Line Width/Spacing/Thickness = 2 um

Energy Per Bit & Bandwidth Density

GPE: Glass Panel Embedded

- E_{bit} only includes interconnect. The ESD capacitances based on model assumptions add 1 pJ/bit
- \Box E_{bit} increases with decreasing pitch due to increased mutual capacitance between IOs

Computing – Photonics Interconnects

\Box Fine Pitch Cu Interconnects too lossy **Interconnect Penalty for 50 mm** (8x14G)

Photonics in the Module

□ Emerging Technology

4.8 dB $8dB$ **Grating** 22 % 37% \Box Coupling Others 36% \blacksquare Waveguide 41% 7.8 dB **Modulator** $9dB$ 3% $0.7dB$

Our (PRC) Focus

15 Georgia Institute of Technology

High Data Rate Wireless

 \Box Higher data rate requires larger bandwidth (1Gbps Vs 10Gbps) 5G and sub-THz (6G)

□ Antenna in Package is essential

Georgia Tech

Low Loss Interconnects

- Coplanar Waveguide (CPW) & Microstrip
- **0.2dB/mm@100GHz and 0.25dB/mm@140GHz**
- Comparable to LCP[2-3], Astra[4], Rogers [5] and Frequency Teflon[4]
- Microstrip: 0.076dB/mm (26-30GHz) **9um Copper** CPW Lines um ARF Glass 100um 5um ABF **Sum Copper** (a) -0.05 -0.05 Insertion Loss(dB/mm)

Georgia Tech

 (c)

Antenna in Package (AiP) – 5G

18 Georgia Institute of Technology

June 16, 2020

Georgia Tech

- 2x2 patch antenna elements top layer
- 2-D Butler matrix bottom layer
- Feed using vias
- Gain of each element: ~6dBi
- Element spacing: 1.1mm (λ/2 @140GHz)
- 20% Bandwidth (goal)
- Total area: 3mm x 3mm

June 16, 2020 Kai-Qi Huang, GT-PRC*.*

19 Georgia Institute of Technology

Reliability & Integration

Distribution of accumulated plastic strain in the second last solder ball for high CTE (9 ppm/K) glass substrate

□ Direct interposer assembly on to Printed Wiring Board

□ Tuned CTE for Glass Interposer maximizes Chip & Board reliability

 \Box Eliminates ONE level of packaging

Usage vs. Accelerated Testing Various Applications

AEROSPACE

AUTOMOTIVE

3D Systems Packaging Research Center

MILITARY

MEDICAL

COMMUNICATIONS

21 Georgia Institute of Technology

Field Conditions—Aircraft Z

Operating Temperatures:

Diurnal Temperatures:

Georgia Institute of Technology

Technical Challenges

- Aggravated solder strains
	- Large CTE mismatch
	- Large package sizes
	- Pitch reduction
	- Aggravated warpage
- Balanced fatigue & drop performance
- Additional constraints
	- SMT-compatibility
	- **Reworkability**
	- System-level reliability

Glass Interposer Reliability for Space Collaboration with JPL Prof. S. Sitaraman

Warpage Measurements **Dicing State State Constructs** Dicing TCT Reliability

• Measure warpage using shadow moiré · Collect data over temperature range based on assembly and operating temperatures Use experimental data to validate model, then use model for analysis and prediction

Glass Interposer **Process Modeling & Prediction from First Principles**

- Model to fully simulate dicing (contact support at bottom, partially cut from next coupon) showed < 2% difference in energy release rate at defect crack tip.
- Critical energy release rate of glass is substantially lower in the presence of water (2 J/m²) than in air (8 J/m²).
- Thicker build-ups have more stress, which causes failure at smalle defect sizes. So thinner build-ups should be a solution

June 16, 2020

24 Georgia Institute of Technology

www.prc.gatech.edu madhavan@ece.gatech.edu

25 Georgia Institute of Technology