NEPP Electronics Technology Workshop June 15-18, 2020

This work was funded in part by the NASA Electronic Parts and Packaging (NEPP) Program and the Trusted & Assured Microelectronics Program Under Interagency Agreement SAA5-18-4-U28631

Single Event Effects in Field Programmable Gate Array (FPGA) Devices: Update 2020

Melanie Berg⁽¹⁾

Melanie.D.Berg@NASA.gov; Melanie.Berg@SSAIHQ.com

Michael Campola⁽²⁾, Hak Kim⁽¹⁾, Anthony Phan⁽¹⁾

1. SSAI Inc. in support of the NEPP Program and NASA/GSFC

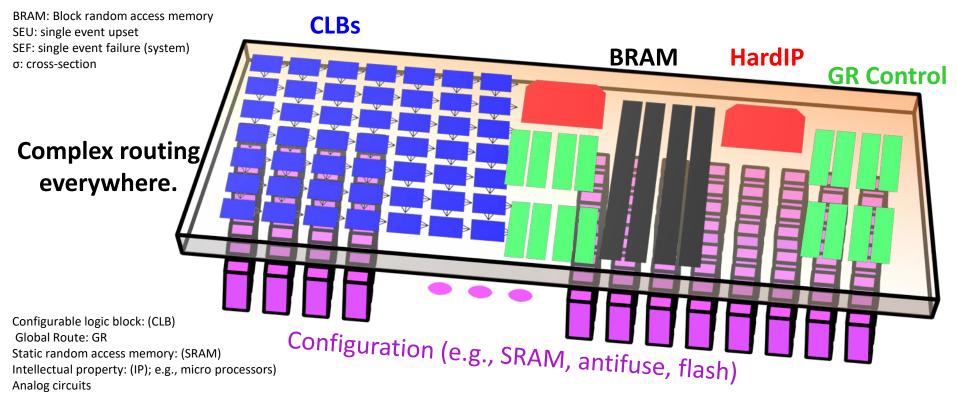
2. NASA Goddard Space Flight Center

Acronym	Definition
1MB	1 Megabit
3D	Three Dimensional
3DIC ACE	Three Dimensional Integrated Circuits
	Absolute Contacting Encoder
AHB	Advanced high performance bus
ADC	Analog to Digital Converter
AEC	Automotive Electronics Council
AES	Advanced Encryption Standard
AMD	Advanced Micro Devices Incorporated
AMS	Agile Mixed Signal
ARM	Acorn Reduced Instruction Set Computer Machine
AXI	Advanced extensible interface
BGA	Ball Grid Array
BRAM	Block Random Access Memory
BTMR	Block triple modular redundancy
CAN	Controller Area Network
CBRAM	Conductive Bridging Random Access Memory
CCC	RTG4 clock conditioning circuit
CCI	Correct Coding Initiative
CGA	Column Grid Array
CMOS	Complementary Metal Oxide Semiconductor
CN	Xilinx ceramic flip-chip (CF and CN) packages are ceramic column grid array
CN	(CCGA) packages
COTS	Commercial Off The Shelf
CRC	Cyclic Redundancy Check
CRÈME	Cosmic Ray Effects on Micro Electronics
CRÈME MC	Cosmic Ray Effects on Micro Electronics Monte Carlo
CSE	Crypto Security Engineer
CU	Control Unit
DC	Direct current
DCU	Distributed Control Unit
DDR	Double Data Rate (DDR3 = Generation 3; DDR4 = Generation 4)
DFF	Flip-flop
DMM	Digital Multimeter
DMA	Direct Memory Access
DSP	Digital Signal Processing
DSPI	Dynamic Signal Processing Instrument
DTMR	Distributed triple modular redundancy
Dual Ch.	Dual Channel
DUALCH. DUT	Device under test
ECC	Error-Correcting Code
	-
EDAC	Error detection and correction
EEE	Electrical, Electronic, and Electromechanical
EMAC	Equipment Monitor And Control
EMIB	Multi-die Interconnect Bridge
EPCS	Extended physical coding layer
ESA	European Space Agency
eTimers	Event Timers
ETW	Electronics Technology Workshop
FCCU	Fluidized Catalytic Cracking Unit
FeRAM	Ferroelectric Random Access Memory
FinFET	Fin Field Effect Transistor
FIR	Finite impulse response filter
FMC	FPGA Mezzanine Card
FPGA	Field Programmable Gate Array
FPU	Floating Point Unit
FY	Fiscal Year
Gb	Gigabit
Gbps	Gigabit per second
GCR	Galactic Cosmic Ray
GEO	geostationary equatorial orbit
GIC GOMACTech	Global Industry Classification Government Microcircuit Applications and Critical Technology Conference
GOMACTech GPIO	Government Microcircuit Applications and Critical Technology Conterence General purpose input/output
GPIB	General purpose interface bus
GPU	Graphics Processing Unit
GR	Global Route
GRC	NASA Glenn Research Center
GSFC	Goddard Space Flight Center

Acronyms

Acronym	Definition
GTH/GTY/GTX	Transceiver Type
GTMR	Global TMR
HALT	Highly Accelerated Life Test
HAST	Highly Accelerated Stress Test
HBM	High Bandwidth Memory
HDIO	High Density Digital Input/Output
HDR	High-Dynamic-Range
HIREV	High Reliability Virtual Electronics Center
HKMG	high-k metal gate
HMC	Hybrid Memory Cube
HPIO	High Performance Input/Output
HPS	High Pressure Sodium
HSTL	High speed transceiver logic
I/F	interface
I/O	input/output
12C	Inter-Integrated Circuit
i2MOS	Microsemi second generation of Rad-Hard MOSFET
IC	Integrated Circuit
I-Cache	independent cache
JFAC	Joint Federated Assurance Center
JPEG	Joint Photographic Experts Group
JTAG	Joint Test Action Group (FPGAs use JTAG to provide
	access to their programming debug/emulation functions)
КВ	Kilobyte
L2 Cache	independent caches organized as a hierarchy (L1, L2, etc.)
I CDT	NEPP low cost digital tester
LEO	Low Earth Orbit
LET	Linear energy transfer
L-mem	Long-Memory
LP	Low Power
LUT	Look-up table
LVCMOS	Low-voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVTTL	Low –voltage transistor-transistor logic
LTMR	Local triple modular redundancy
LW HPS	Lightwatt High Pressure Sodium
M/L BIST	Memory/Logic Built-In Self-Test
Mil-STD	Military standard
MAPLD	Military Aerospace Programmable Logic Device
MFTF	Mean fluence to failure
μPROM	Micro programmable read-only memory
µSRAM	Micro SRAM
Mil/Aero	Military/Aerospace
MIPI	Mobile Industry Processor Interface
ММС	MultiMediaCard
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor
MP	Microprocessor
MP	Multiport
MPFE	Multiport Front-End
MPSoC	Multiprocessor System on a chip
MPU	Microprocessor Unit
Msq	message
MTTF	Mean time to failure
NAND	Negated AND or NOT AND
NASA	National Aeronautics and Space Administration
NEPP	NASA Electronic Parts and Packaging
NOP	Not OR logic gate
NOR	
NV(M)	Non-volatile (memory)
NV(M) OCM	On-chip RAM
NV(M) OCM OSC-TMR-PLL	On-chip RAM Embedded triple modular redundant phase locked loop
NV(M) OCM OSC-TMR-PLL OSC	On-chip RAM Embedded triple modular redundant phase locked loop Oscillator
NV(M) OCM OSC-TMR-PLL OSC OSD	On-chip RAM Embedded triple modular redundant phase locked loop Oscillator Office of the Secretary of Defense
NV(M) OCM OSC-TMR-PLL OSC	On-chip RAM Embedded triple modular redundant phase locked loop Oscillator

Acronym	Definition
PCle	Peripheral Component Interconnect Express
PCle Gen2	Peripheral Component Interconnect Express Generation 2
Pconfiguration	SEU cross-section of configuration
PHY	SEU cross-section of functional logic
	Physical layer
PLL	Phase Locked Loop
PLOL	Phase Locked Loop loss of lock
PMA	Physical Medium Attachment
POR	Power on reset
PPM	Parts per million
Proc.	Processing
PS-GTR	High Speed Bus Interface
PSEFI	SEU cross-section from single event functional interrupts
Psystem	System SEU cross-section
QDR QFN	quad data rate
QML	Quad Flat Pack No Lead
QML	Qualified manufactures list
RC	Serial Quad Input/Output
R&M	Resistor capacitor
RAM	Reliability and Maintainability Random Access Memory
ReRAM	Resistive Random Access Memory
RGB	Red, Green, and Blue
RH	Radiation Hardened
RT	Radiation Flandened Radiation Tolerant
RTD	Representative tactical design
RTG4FCCC_0	RTG4 Phase lock loop Core
SATA	
SCU	Serial Advanced Technology Attachment Secondary Control Unit
SD	Secure Digital
SD/eMMC	Secure Digital embedded MultiMediaCard
SD-HC	Secure Digital High Capacity
SDM	Spatial-Division-Multiplexing
SEE	Single Event Effect
SEE	Single event failure
SEFI	Single Event Functional Interrupt
SEL	Single event latchup
SERDES	Serializer/deserializer
SET	Single event transient
SEU	Single event upset
Si	Silicon
SK Hynix	SK Hynix Semiconductor Company
SMDs	Selected Item Descriptions
SMMU	System Memory Management Unit
SOA	Safe Operating Area
SOC	Systems on a Chip
SPI	Serial Peripheral Interface
sRIO	Serio Rapid I/O
SSTL	Sub series terminated logic
TBD	To Be Determined
Temp	Temperature
THD+N	Total Harmonic Distortion Plus Noise
TMR	Triple Modular Redundancy
T-Sensor	Temperature-Sensor
TSMC	Taiwan Semiconductor Manufacturing Company
UART	Universal Asynchronous Receiver/Transmitter
UltraRAM	Ultra Random Access Memory
USB	Universal Serial Bus
VNAND	Vertical NAND
WDT	Watchdog Timer
WSR	Windowed shift register
XAUI	Extended 10 Gigabit Media Independent Interface
XGXS	10 Gigabit Ethernet Extended Sublayer
XGMII	10 Gigabit Media Independent Interface)



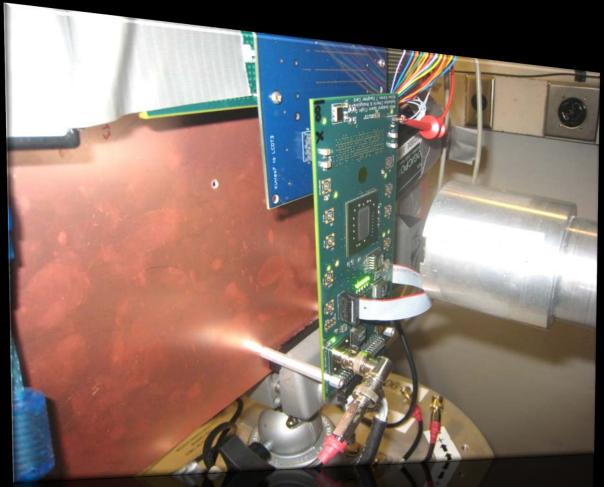
- FPGA and SEE Test Methodology Overview
- Xilinx Kintex-UltraScale SEE Test and Analysis
- Microsemi PolarFire SEE Test and Analysis
- SEE Data Analysis Methodology (SRAM-based FPGA)

FPGA SEU Cross-section Model

Cross-sections for a mapped design/system (σ_{SEF}) are a function of the FPGA's internal elements and the mapped design's topology.

 $\sigma_{SEF} = f(\sigma_{configuration}, \sigma_{BRAM}, \sigma_{functionalLogic}, \sigma_{HiddenLogic})$

Dominant mechanisms of failure will drive σ_{SEF}


SEF and Dominant Mechanisms of Failure

- Distinction must be made between SEU/SEF test methodologies, functional testing, and reliability/TID studies.
- The mechanisms of failure, their impact, and metrics differ:
 - SEU/SEF: Upon random-event particle ionization...how often does something happen; mean-time-to-failure; mean-fluence-to-failure; probabilities; statistics. Flat portion of reliability-bathtub curve.
 - Functional: Based on a potential design flaw... Does the system operate as expected? No correlation to how long it takes to find a failure or how often – the importance is to find any failure.
 - **Reliability/TID:** degradation... right-side rising portion of bathtub curve.
- SEF cross-sections will depend on the FPGA type and the usermapped design's dominant mechanisms of failure. Yet some studies tend to focus on mechanisms that have negligible impact.
- SEE dominant mechanisms of failure drive the following:
 - Test methodology (test fixture, stimulus, monitors, and capture)
 - Data results (cross-sections) ... no need to concentrate on items that have negligible contributions.
 - Error rate/ Survivability prediction

SRAM-based FPGA Single Event Effects (SEE) Study: Xilinx Kintex-Ultrascale (XCKU040-1LFFVA1156I)

SEU: single event upset σ_{SEU} : SEU Cross-section

SEFI: single event functional interrupt DUT: device under test SEL: single event latch-up SET: single event transient

- This is an independent investigation that evaluates the single event destructive and transient susceptibility of the the Xilinx Kintex-UltraScale device.
- Design/Device susceptibility is determined by monitoring the DUT for SET and SEU induced faults by exposing the DUT to a heavy ion beam.
- Potential SEL is checked throughout heavy-ion testing by monitoring device current.
- FPGA part# XCKU040-1LFFVA1156I.

NEPP performs independently driven studies to determine various device/system susceptibilities as they pertain to NASA programs.

Collaboration and Test Campaigns

This study is divided in two phases (if any, additional phases will be community driven/funded):

- **Phase I:** Generic component study:
 - Collaboration: NEPP, Xilinx, and Space R² LLC
 - Tests performed: 11/2019 LBNL
 - Additional Data: gathered from a prior NEPP Kintex-UltraScale test campaign 03/2017 TAMU
 - Completed: test report submitted (December 2019)
- Phase II: Advanced component/system study:
 - Collaboration: NEPP, Xilinx, Aerospace, and Space R² LLC
 - New structures/tasks:
 - Scrubbing (32-bit 50 MHz)
 - Xilinx Microblaze processor
 - Multi-transceiver (GTX) lanes
 - Triple modular redundancy (TMR)
 - Will begin shortly after government opening.

Impact to Community: Kintex-UltraScale

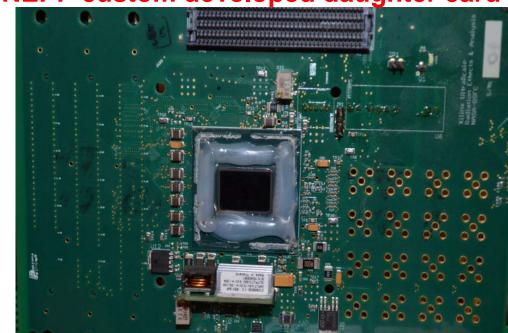
COTS: commercial off the shelf

- Entry into the aerospace market with COTS expectation (KU060)*.
- Fabricated on a high-k metal gate (HKMG) TSMC 20 nm planar HPL (high performance low power) process.
- I/O interfaces are robust and meet the space community's needs.
- Previous studies show no SEL.
- There are no embedded mitigation circuits in the user fabric. However, higher gate-count affords the user to insert mitigation.
- There is no embedded processor. However, the user can embed a soft-core. Data Transfer Is Key for Our New System Applications: Kintex-UltraScale Transceivers (GTH and GTY ... GTX)

Туре	GTH	GTY
Quantity	16-64	0-32
Maximum Data Rate	16.3Gb/s	16.3Gb/s
Minimum Data Rate	0.5Gb/s	0.5Gb/s

*Actual designated device (by Xilinx) is the KU060. KU040 was the device under test (DUT) for this investigation. Both devices are from the same Xilinx product family (same process) and have the same geometry (20 nm). It is agreed upon and understood by the SEE community that data obtained by one device applies to the other.

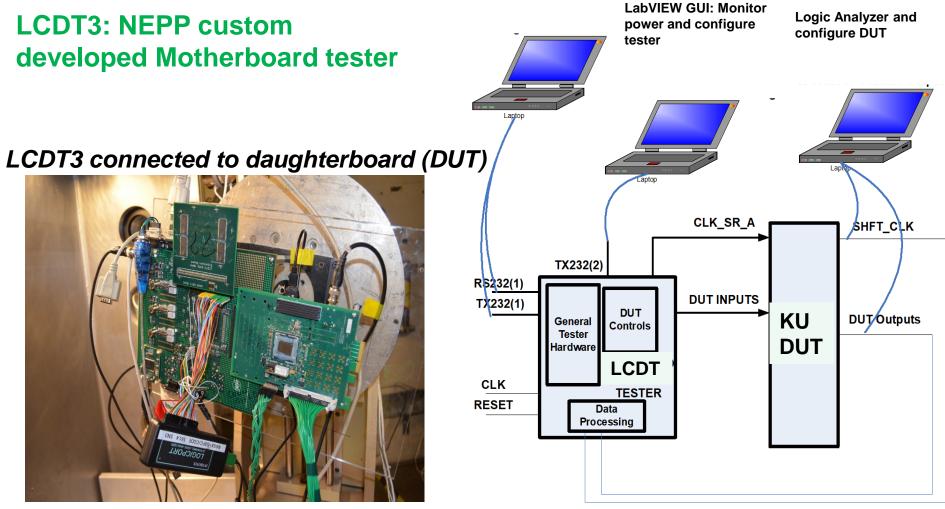
DUT Preparation for Heavy-Ion SEE Testing



- NEPP populated three custom-made daughter boards with XCKU040-1LFFVA1156I (DUT) devices.
- The DUTs were thinned using mechanical etching via an Ultra Tec ASAP-1 device preparation system.
- The parts were successfully thinned to 90 um 100 um.

Ultra Tec ASAP-1

NEPP custom developed daughter card



Test System: LCDT and DUT (KU040)

LCDT: low cost digital tester GUI: Graphical User Interface CLK, CLK_SR_A, SHFT_CLK: clocks RS232, TX232: universal asynchronous receiver-transmitter (UART)

LabVIEW GUI: Send Commands and Receive Data

Heavy-Ion Test Facilities and Test Conditions

- Flux: 1.0x10² to 1.0x10⁵ particles/cm²/s
- Fluence: All tests were run to 1 x 10⁷ particles/cm² or until destructive or functional events occurred.
- Test Temperature: Room Temperature.

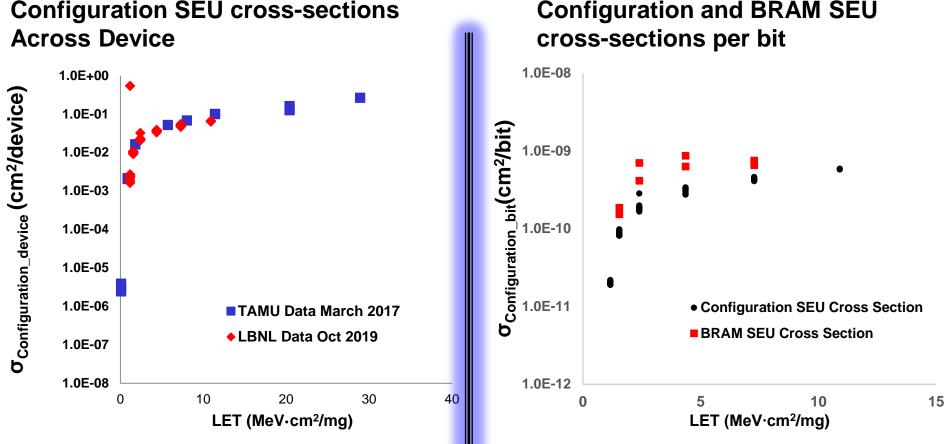
Lawrence Berkeley National Laboratory (LBNL)

lon	Energy (MeV/Nucleon)	Effective LET(MeV·cm²/mg)0°
Ν	16	1.16
Ο	16	1.54
Si	16	2.39
Si	16	4.35
Ar	16	7.27
V	16	10.9

Texas A&M (TAMU)

lon	Energy (MeV/Nucleon)	LET (MeV*cm²/mg) 0°	LET (MeV*cm²/mg) 60 °
He	25	0.07	0.14
Ν	25	0.9	0.18
Ne	25	1.8	3.6
Ar	25	5.5	11.0
Kr	25	19.8	40.0

Summary: Phase I DUT Test Structures

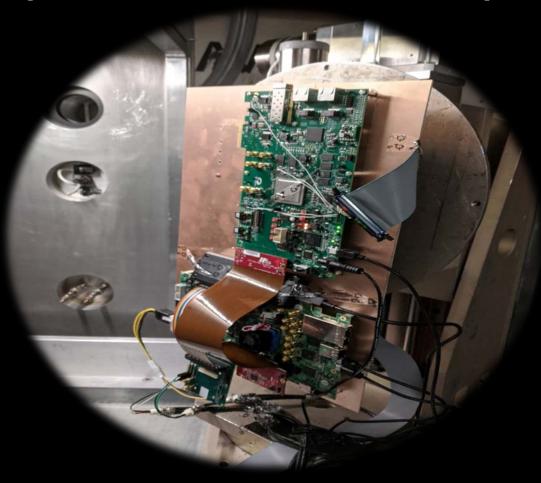


Generic Component Study

Test Structure	Frequency Range
Configuration	N/A
BRAM	50 MHz
Shift Registers (WSR)	100 MHz
Counter Arrays	50 MHz
DSP Blocks (FIR)	100 MHz
GTX (Aurora single lane)	3.125 GHz

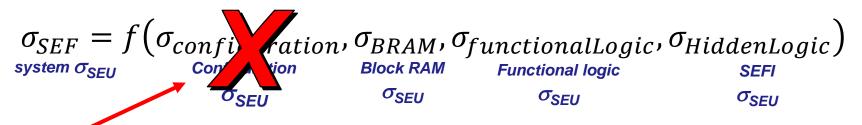
Xilinx Kintex-UltraScale Configuration and BRAM SEU Data

Note1: TAMU and LBNL data correlate.


Note2: Graphs have different scales.

Note 3: Left graph: across device... right graph: normalized per bit.

Additional Kintex data will be shown in a following section.


SONOS FPGA Single Event Effects (SEE) Study: Microsemi PolarFire ® (MPF300TS-1FCG1152I)

Microsemi PolarFire Study Objectives

- This is an independent investigation that evaluates the single event destructive and transient susceptibility of the Microsemi PolarFire FPGA device.
- Design/Device susceptibility is determined by monitoring the DUT for Single Event Transient (SET) and Single Event Upset (SEU) induced faults by exposing the DUT to a heavy ion beam.
- Potential Single Event Latch-up (SEL) is checked throughout heavy-ion testing by monitoring device current.
- FPGA part# MPF300TS-1FCG1152I.

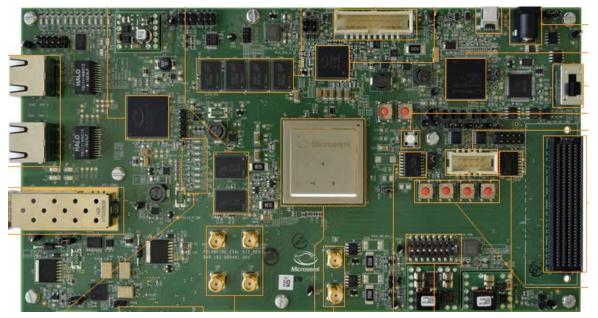
SONOS configuration is not expected to have bit flips. However, pass/fail configuration readbacks were performed after each experiment.

Collaboration and Test Campaigns

This study is divided in multiple phases:

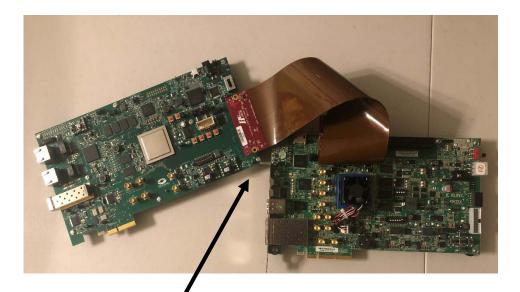
- Phase I: Generic component study
 - Collaboration: NEPP, Microsemi, Trusted & Assured Microelectronics Program
 - Tests performed: 11/2019 LBNL
 - Completed and test report submitted (December 2019)
- Phase II: Fill out SEE cross-sections
 - Collaboration: NEPP, Microsemi, Trusted & Assured Microelectronics Program
 - Same test structures as Phase I (generic components)
- Phase III: TBD
 - Collaboration: NEPP, Microsemi, and ???
 - New structures/tasks: TBD

Impact to Community: Microsemi PolarFire ®



- SONOS non-volatile (NV) technology on a 28 nm technology node. Innately hardened configuration.
- Reconfigurable FPGA with SEU immune configuration.
- User fabric logic (flip-flops, combinatorial logic, global routes) are not hardened. However, increase in logic gates allows for user inserted mitigation (e.g., TMR and watchdogs).
- Cost advantage over SRAM-based FPGAs and previous generation Microsemi FPGAs using floating gate NV technology (65nm and older).
- Trust related embedded structures:
 - Physically unclonable function (PUF)
 - Secure eNVM ® (non-volatile memory security feature)
 - Tamper detectors and counter measures
- Up to 24 multi-protocol low power serial I/O: 250Mbps 12.5 Gbps Transceiver lanes

DUT Preparation for Heavy-Ion SEE Testing

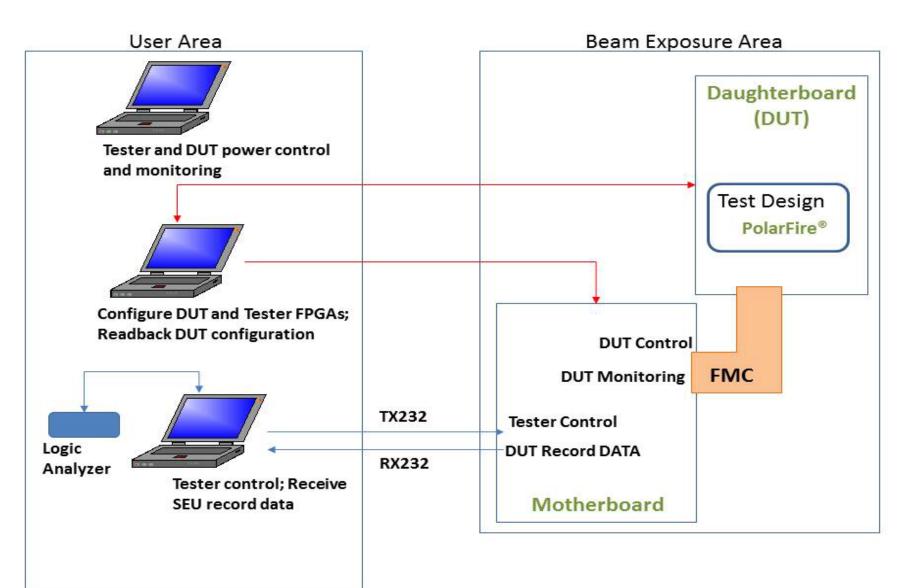

- NEPP acquired two evaluation-boards (MPF300-EVAL-KIT) populated with MPF300TS-1FCG1152I PolarFire® devices.
- The DUTs were thinned using mechanical etching via an Ultra Tec ASAP-1 device preparation system.
- The parts were successfully thinned to roughly 100 um.

NEPP use of an evaluation board as a daughterboard instead of developing custom daughter card.

Test Setup: New Motherboard Tester

NEPP is now using evaluation boards as motherboards (testers). LCDT replacement

> Motherboard: development of ethernet capability


Motherboard

Flexible FPGA Mezzanine Card (FMC)

Test System: At Heavy-Ion Facility


Summary: Phase I DUT Test Structures

Generic Component Study

Test Structure	Frequency Range
Configuration	N/A
BRAM	50 MHz
Shift Registers (WSR)	100 MHz
Counter Arrays	50 MHz
DSP Blocks (FIR)	100 MHz

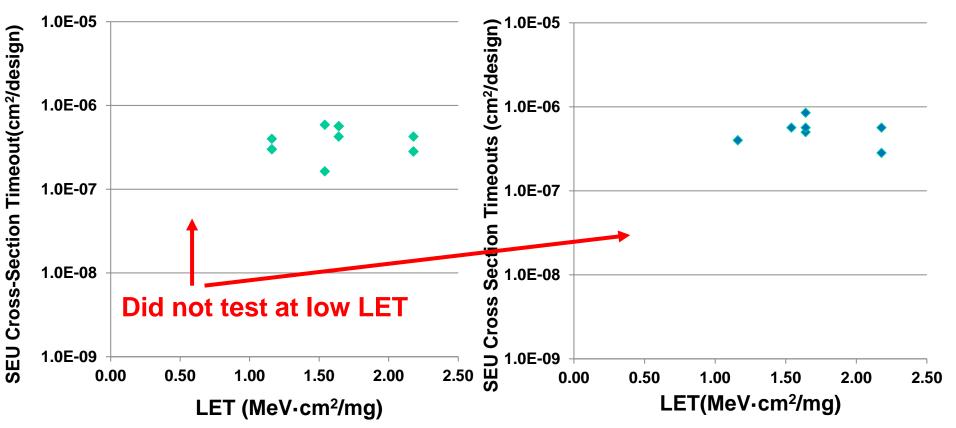
Heavy-Ion Test Facility and Test Conditions

- Facility: Lawrence Berkeley National Laboratories 88 inch Cyclotron, 16 MeV/amu tune.
- Flux: 1.0x10³ to 1.0x10⁵ particles/cm²/s
- Fluence: All tests were run to 1 x 10⁷ particles/cm² or until destructive or functional events occurred.
- Test Temperature: Room Temperature.
- Power Supply Voltage: $V_{cc} = 1.2V$; $V_{IO} = 2.5V$

We lost a significant amount of test time because of California wild-fires.

Linear	energy	transfer	(LET)
--------	--------	----------	-------

lon	Energy (MeV/Nucleon)	Effective LET(MeV·cm ² /mg)0°
Ν	16	1.16
0	16	1.54
Ne	16	2.39

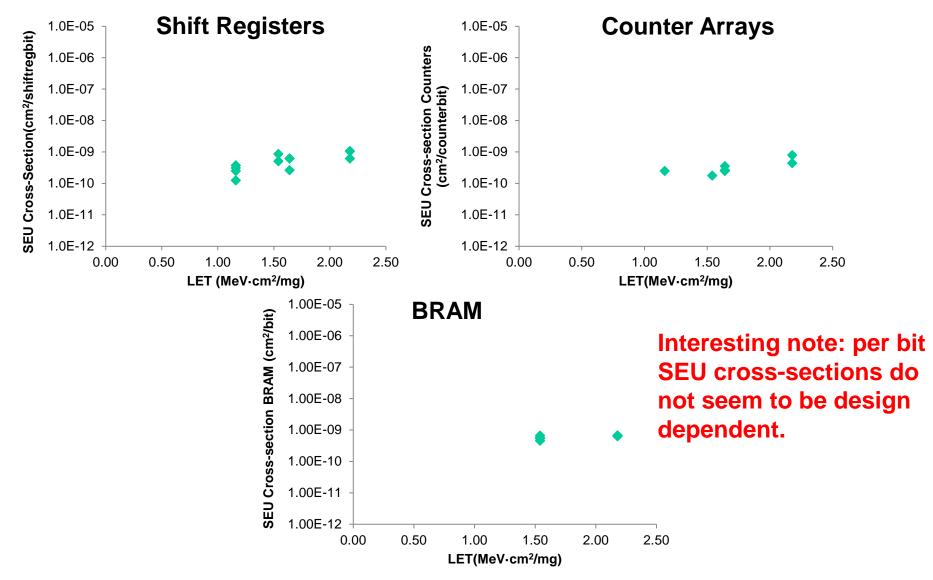

Current-Drop Anomaly

- Every experiment (if run with enough particle fluence) experienced a current drop; however all but one (1) test had a current drop lasting for 1.7 ms.
- Shown: drop lasted for 177s cleared on its own. Only observed during one test at an LET = 1.0 MeVcm²/mg.
- Most current measurement systems are not setup to detect a 1.7 ms drop. We were able to catch the event due to the various means of active/real-time data capture during test.

PolarFire Current-Drop (Timeout*) SEU Cross-Sections

*1.7 ms current-drop event could not be observed via normal current measurement apparatus. However, the current event could be observed by DUT-operation timeouts.

Data across designs correlate ... Events are not design dependent; Mechanism of failure is embedded in device.


Current Drop Anomaly: Additional Information

- Normal operational current was marked at approximately 2.75 A; The corecurrent dropped below 100 mA during anomalous event.
- The current drop was always recoverable.
- The current drop lasted for approximately 1.7 *ms* except for one event which lasted for approximately 177*s*.
 - Note that the event shown on the previous slide is not the 1.7 ms event; alternatively it is the 177 s event.
 - Difference in current-drop duration is generally in the order of microseconds.
- The current drop is significant enough to stop operation (timeout).
- A reset is required after the current drop (state-space is lost during the event).
- No configuration is lost after a current drop (read-back passes with no SEUs).
- The current drop occurred for every test at every LET (that was used during the first-look study).
- Lower LET values are required to achieve a more accurate reliability/survivability calculation per environment.
- Microsemi is aware of the anomaly and is working to identify responsible circuitry.

Microsemi PolarFire ® Additional SEE Testing

- Lower LET experiments are necessary in order to characterize the current-drop onset and to predict errorrates.
 - Requires TAMU heavy-ion tests (LETs can go as low as 0.07 MeVcm²/mg).
- Higher LET experiments are necessary in order to fill out the SEU cross-section curve; and to find saturation.
- NEPP will investigate:
 - More complex embedded components
 - Test-as-you-fly (representative tactical designs (RTD)).

Data Handling and Survivability/Error Rate Prediction Techniques

At the end of the day... the professional industry gathers SEE data for SEF and survivability/error-rate prediction.

What do we do with all of this data?

Survivability for Mission Critical Applications: Problem Statement

For SEF analysis, common practice is to use simple test structures that focus on discrete components:

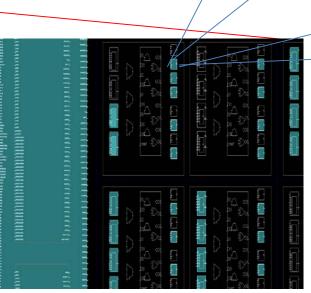
- Data are extrapolated into survivability calculators.
- Generic SEU data are used across all designs.
- Assumption: the need for testing is reduced.
- However, the fidelity of generic SEU data extrapolation to tactical designs is questionable.

Better to use representative tactical designs (RTD) for SEU analysis:

- Data are a better fit for characterizing tactical behavior.
- However, requires SEU testing for every design!

How do we provide SEU data for survivability calculations of tactical systems; while reducing the need to test every design? Generic testing versus Test-As-You-Fly.

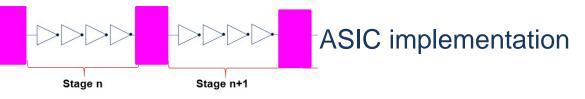
NEPP FPGA Device Investigations: Generic SEE Data versus RTD SEE Data


- Data presented in earlier slides are component level/generic.
- NEPP will always perform a component level investigation on FPGAs:
 - First look
 - Flush out
 - General idea if mitigation will be required
 - Important information for the community
- As FPGA devices become more complex extrapolation from simple component structures to RTD is not an appropriate method for tactical characterization.
- NEPP does perform test-as-you-fly (RTD) FPGA SEE investigations for programs (program-specific experiments).

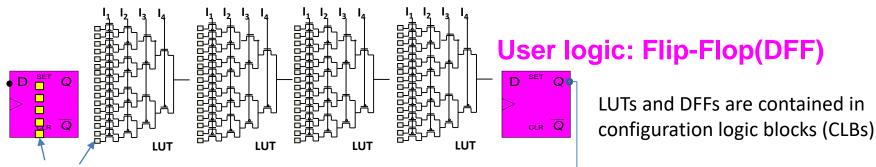
Embedded View of Mapped Logic

FPGA configuration and user logic are different types of embedded components.

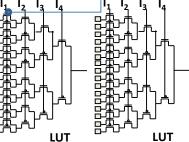
Modern FPGAs have 100's of millions of configuration bits and 100's of thousands of logic cells.

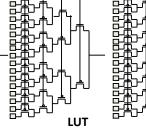

Configuration

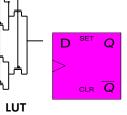
Designs only map into a portion of the configuration and only use a portion of the user fabric logic gates.



Why Extrapolation Does not work with Generic Test Structures: Example Shift Register

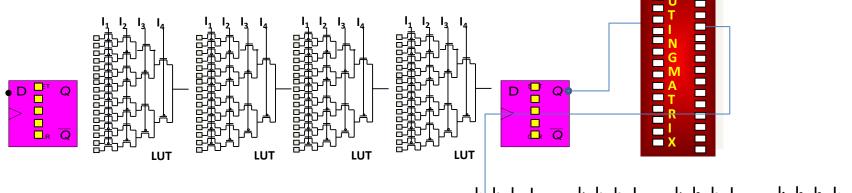



User logic: Lookup Table (LUT)



Configuration bits

With an SRAM-based FPGA, each design uses more logic than assumed. Makes extrapolation of SEU data (from simple test structures to tactical designs) unreliable.



Generic Xilinx Implementation (LUT can differ by family)

Closer Look: Shift Register with Manufacturer Inserted Routing Matrix (Hidden Logic)

Hidden Logic: Routing matrix inserted during place and route phase. Adds to the overall design susceptibility.

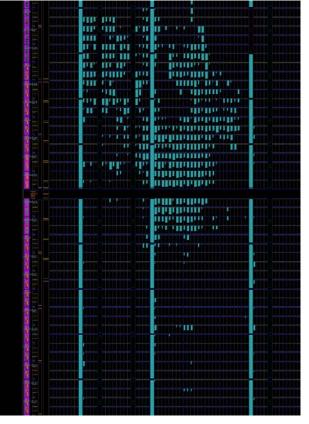
Simple test structures will not capture the impact of a tactical design's hidden logic (data are not extrapolatable). Hence the drive towards testing RTD structures.

Representative Tactical Design (RTD) Test Structures and MFTF Test Strategies

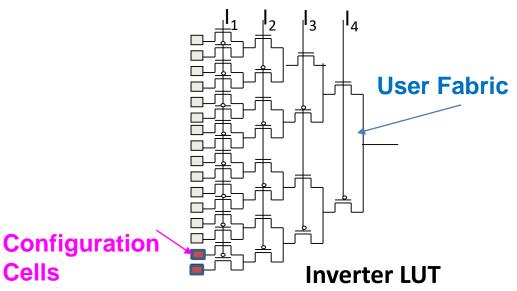
- **RTDs are based on tactical designs and might contain the following:**
 - Embedded processors
 - Highspeed serial (GTX)
 - Embedded SRAM (BRAM)
 - Global routes
- **RTDs must obey tactical design strategies:**
 - Synchronous design
 - Routing/floorplanning specifics
- **Piecemeal RTD tests, yet use complex structures:**
 - Increases visibility
 - Study trends
 - Have at least one full RTD (close as possible to tactical)
- RTD/MFTF testing requires an increase in the number of experiments (statistics); and will be driven by dominant mechanisms of failure.

Mean fluence to failure (MFTF): record fluence that failure occurs.

Data Analysis: Easing the process of SEU test and analysis for tactical-design survivability prediction.


The following slides only apply to Xilinx SRAM-based FPGA devices with no

To be presented by Melanie D. Berg at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology


Configuration, Mask, and Essential Bits

NASA

Design mapping into user fabric logic cells is defined by configuration bit settings.

- Configuration bits: Total number of configuration cells... (fixed per each FPGA type)
 - Masked bits: calculated by the manufacturer and is not under user control... design and device dependent
 - Unmasked bits
- Essential bits: number of configuration cells used by the design mapping (calculated by the manufacturer upon user directive... design and device dependent).

SEU Cross-Sections

- Cross-section Categorization:
 - Across all configuration cells (device)
 - Per configuration cell (device-bit)
 - Across essential-bits (Design + device)
 - Design specific

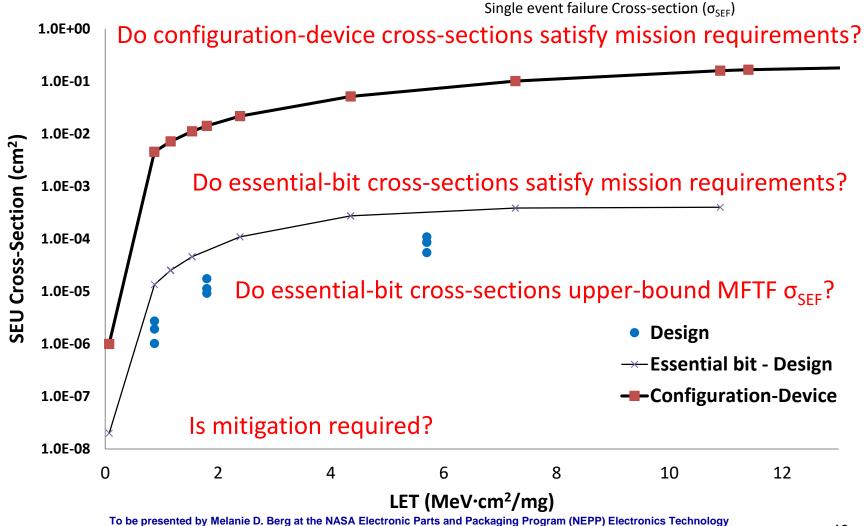
Generally, configuration cross-sections are readily available from generic device investigations.

 $\sigma(LET)_{configuration_Device} = \frac{\#errors}{\#Particles/cm^{2}}$ $\sigma(LET)_{configuration_bit} = \frac{\#errors}{(\#Particles}) * (\#unmaskedconfigurationBits)}$

 $\sigma(LET)_{\text{Essential_bit}} = Essential_bits \times \sigma(LET)_{configuration_bit}$

 $\sigma(LET)_{SEF} = 1/MFTF = 1/((FailureTime - BeamStartTime)*AverageFlux)$

Which cross-sections do we use for survivability analysis? Must consider mission requirements.


Mission Driven Data Analysis

- Assuming configuration SEU cross-sections are strict upper-bounds: Does the survivability prediction using the configuration SEU crosssections per device satisfy mission requirements?
 - Can I stop here? If mission requirements are satisfied, then readily available configuration SEU cross-sections can be used.
 - Additional testing might be required to investigate device anomalies.
- Assuming essential-bit SEU cross-sections are strict upper-bounds: Will the essential bit SEU cross-sections satisfy mission requirements?
 - In most cases, this will still be a strict upper-bound of a design's SEU susceptibility... however ... should test to verify the assumption.
 - Requires configuration read-back tests.
 - Requires RTD-MFTF testing.
- If MFTF SEU results are not mission compliant, is mitigation necessary?

If Upper-bounds Satisfy Mission Reliability/Survivability Requirements, Then No Mitigation is Required.

Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 15-18, 2020 and published on nepp.nasa.gov.

Xilinx SEU Test and Analysis: What Can the Manufacturer Provide?

Front-end Proof of Concept

 $\sigma(LET)_{\text{Essential_bit}} = Essential_bits \times \sigma(LET)_{configuration_bit}$

- Goal is to determine if generic data can be extrapolated to characterize complex tactical designs.
- Providing DFF, CLB, and LUT generic test data is not extrapolatable.
 - Topology effects are non-linear and does not include hidden logic.
- An alternative is to prove $\sigma(LET)_{Essential_bit}$ is an upper-bound to $\sigma(LET)_{SEF}$.

Manufacturer performs a variety of tests (benchmarks) to compare $\sigma(LET)_{\rm Essential_bit}$ to $\sigma(LET)_{\rm SEF}$.

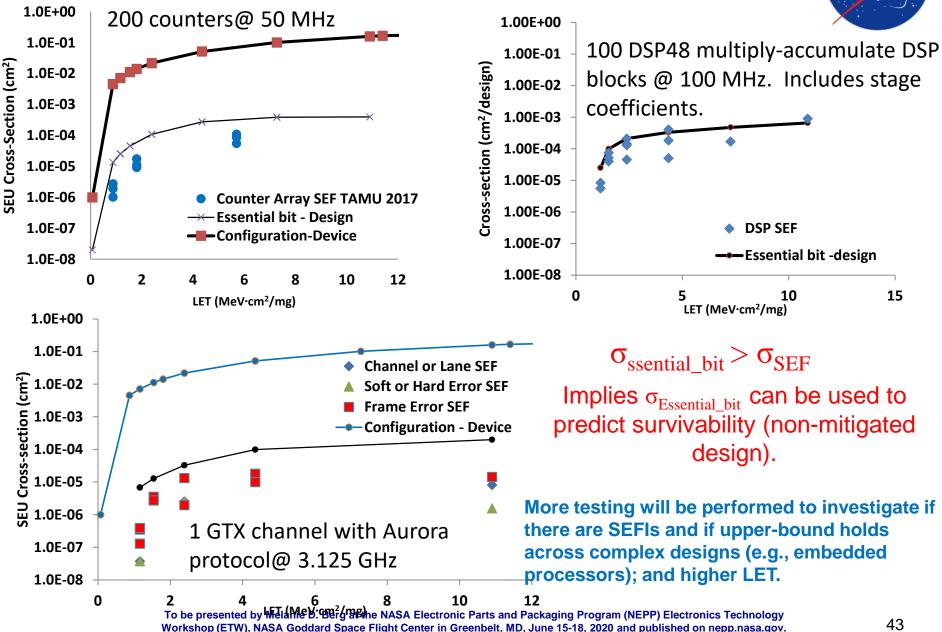
Manufacturer provides generic data: configuration, BRAM, and embedded logic cross-sections.

Manufacturer performs additional testing to investigate potential SEFIs and other device SEE susceptibilities (global routes and SEL).

Xilinx SEU Test and Analysis: What Does The End-User Do with The Data? Application of Concept

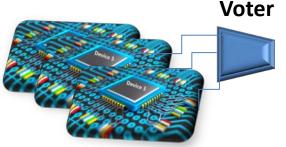
Intellectual property (IP)

- If σ(LET)_{Essential_bit} proves to be a satisfactory upper-bound, the σ(LET)_{configuration_bit} data and the tactical design's calculated essential-bits can be used by development teams for survivability analysis.
- In the past, σ(LET)_{Essential_bit} has been assumed (by some) to be adequate for survivability prediction. However, as technology shrinks the need for RTD-MFTF testing and proof of concept is growing:
 - Mixed-signal circuitry, global-routes, and hidden logic (embedded IP cores) will have more impact on $\sigma(LET)_{SEF}$ at low LETs.
 - Compare your design to manufacturer benchmark designs. Use $\sigma(LET)_{\text{Essential_bit}}$ for survivability calculations if $\sigma(LET)_{\text{Essential_bit}} > \sigma(LET)_{\text{SEF}}$



If manufacturer data show anomalies or your tactical design has untested complexities, additional RTD testing will be needed.

The end-user should not piecemeal small grained components (e.g., CLBs) for survivability analysis because of hidden logic and topological non-linearities.


Kintex-UltraScale SEU Cross-Sections

Mitigation Analysis

- If the survivability analysis proves the design implementation does not satisfy mission requirements, user-inserted mitigation might be necessary.
 - This will change the design and its essential-bit count.
 - Essential-bit upper-bounds cannot be used to measure the survivability of applications with embedded mitigation.
 - Mitigation requires additional logic
 - Additional logic will increase the essential-bit count and consequently increase the estimated σ_{SEF}
 - RTD-MFTF testing is required to measure the efficacy of the inserted mitigation. Can't assume mitigation performs as expected.
 - Requires the development team to perform SEU testing.
- Should analyze the design with-mitigation and without-mitigation (when possible)... used as another metric for the fidelity of the inserted mitigation.

Summary: Data Handling and Survivability/Error Rate Prediction Techniques

- Purpose of the work is to improve SEU data-sets used for survivability analysis.
- Generic SEU data obtained from testing simple structures (e.g., shift registers) are no longer adequate for SEU characterization of FPGA designs.
- An approach is presented that combines investigating simple and complex test structures:
 - Investigates the efficacy of using configuration SEU data with design specific information for survivability analysis.
 - Goal is to reduce the necessity of performing SEU testing on every design.
 - MFTF testing of complex structures is required to validate the approach (per SRAM-based FPGA family of devices).
- Xilinx Kintex-UltraScale data are presented:
 - Data suggest that essential-bit SEU cross-section might be a reliable dataset for survivability analysis.
 - Additional testing by Xilinx is required and will be performed... yet initial results are promising.
 - Eventually, this approach can reduce the need for testing by the end-user.
- If mitigation is required, $\sigma(LET)_{SEF}$ RTD-MFTF testing is required to be performed/orchestrated by the end-user.

NEPP Future Work SEE in FPGA Devices

To be presented by Melanie D. Berg at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 15-18, 2020 and published on nepp.nasa.gov

Constant of the second

Potentially In the Works...

- Investigation of Lattice 28 nm CrossLink-NX (FD-SOI) SRAM-based FPGA
 - Proton
 - TID
- Further SEE investigation of 28 nm NV-based PolarFire ®
 - Proton
 - Heavy-ion
 - Test-as-you-fly
- Xilinx SRAM-based MPSoC 16nm FinFET ruggedized (and nonruggedized) package
 - Proton
 - Heavy-ion
 - Test-as-you-fly (NASA-specific)
- Intel SRAM-based Stratix-10 SoC 14 nm FinFET
 - Proton
 - Heavy-ion
 - Test-as-you-fly

Thank You Questions?

This work was funded in part by the NASA Electronic Parts and Packaging (NEPP) Program and the Trusted & Assured Microelectronics Program Under Interagency Agreement SAA5-18-4-U28631