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AC alternating current FR failure rate

AF accelerating facor HTS high temperature storage

AT anomalous transients LT life test

C capacitance MSL moisture sensitivity level

CCS constant current stress PEDOT:
PSS

Poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate)

CPTC chip polymer tantalum capacitor S&Q screening and qualification

DC direct current SCT surge current stress

DCL direct current leakage T temperature

DF dissipation factor TS thermal shock

ER established reliability VBR voltage breakdown

ESR Equivalent series  resistance VR voltage rating



Abstract
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This presentation gives a comparative analysis of
degradation processes, failure modes and mechanisms in
MnO2 and polymer technology capacitors. Analyzed
conditions include effects of vacuum and radiation, soldering
(pop-corning), long-term storage, operation at high
temperatures, stability at low and high temperatures, and
anomalous transients. Screening and qualification
procedures to assure space-grade quality of CPTCs are
suggested.



Outline

 Effect of moisture.
 Effect of soldering.
 Effect of vacuum.
 Stability at low and high temp.
 Effect of storage at high temp.
 Life testing.
 Anomalous transients.
 Quality assurance for space 

applications.
 Summary.
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is replaced with conductive polymer



Advantages and Disadvantages of 
CPTCs for Space Applications
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 Advantages: 
 Better volumetric efficiency (smaller case sizes); 
 Higher operating voltages (up to 125V);
 Lower ESR (milliohm range);
 A relatively safe failure mode (no ignition);
 Radiation hardness is similar to MnO2 parts (up to 5 Mrad Si).

 Disadvantages:  
 Variety of materials and processes for cathode formation; 
 Desorption of moisture in vacuum can be a benefit or a hazard;
 Intrinsic ESR degradation processes at high temperatures;
 A new phenomena: anomalous transients;
 S&Q system developed for MnO2 capacitors is not sufficient 

due to new failure and degradation mechanisms.
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Effect of Moisture
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 CPTCs are more sensitive to moisture compared to MnO2 caps.
 Capacitance variations can reach 40% and DCL >104 times.

Relaxation of leakage 
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Failures after Soldering
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Pop-corning due to the presence of moisture 
increases delamination, introduces cracks in 
package and might damage Ta2O5 dielectric.

Cracks in packages facilitate penetration of 
oxygen that increases the rate of ESR 
degradation in CPTCs.

Damage to dielectric causes first 
power-on failures in MnO2 capacitors. 
The effect has not been observed yet 
in CPTCs.

 Damage caused by soldering is lot-related.
 Pop-corning issues can be resolved by baking.
 Requirements for MSL testing should include 

measurements of ESR and surge current testing. 

Test CWR29, 10uF 35V
as is Bake Moisture

AC testing 0/20 0/20 0/20
SCT at 15V 2/20 0/20 9/20
SCT at 35V 1/18 0/20 8/11

MnO2 first 
power-on 
failure (1.5Ω)      

Crack in CPTC, 
MSL test



Effect of Soldering
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 Decrease of C in CPTCs is greater than in MnO2 capacitors.
 Soldering increases ESR in most types of capacitors, but the 

level of variations is lot-related.
 Soldering results in drying off capacitors by 50 to 93%.

MnO2 
G1

Polym
G2

Polym
G3

Polym
GM

Polym
A1

Polym
A2

Polym
AQ

∆Csold/Cinit, % 1.4 10.9 8.4 6.2 13.1 18.8 8.3
∆Cmax/Cinit,% 2.3 11.8 9.8 6.9 21.5 26 16.6

∆Csold/∆Cmax, % 63 93 86 89 61 72 50

Variations of capacitance in 35V capacitors during MSL1 testing                                            

Variation of AC characteristics                                           



Effect of Vacuum
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Drying in vacuum has a similar 
effect as drying in air:
oDecreasing of capacitance and DF;
oA relatively small changes in ESR;
oVariations of C and DF with V;
oIncreasing of transient leakage 

currents, especially at  low T.
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Variations of Characteristics with Time 
after Vacuum
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 Moisture sorption after vacuum testing 
results in extremal variations of DF.

 CPTCs remain dry and can be tested 
after vacuum for several days at room 
conditions.

∆𝑚𝑚
∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
∆𝐶𝐶

∆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
 Tantalum pellet can be used as a moisture sensor:



Stability of Characteristics at Low and 
High Temperatures
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Capacitance in CPTCs increases with T to a greater degree than in 
MnO2, but ESR is much more stable.
Results of stability testing might depend on moisture content.
CPTCs might be used for cryogenic applications.
DCL in CPTCs might increase above DCLmax at  low temeratures.

Variations of C and ESR with temperature Variations of DCL with T
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Hysteresis of Leakage Currents during 
Temperature Variations
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 Extremal variations of leakage currents in the process of heating.
 Maximum currents can be reached at temperatures from -65 ºC

to 0 ºC and exceed the specified limit.
 Hysteresis can exceed 6 orders of magnitude and is one of 

manifestations of anomalous transients.
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Effect of HTS

To be presented by A. Teverovsky at the NEPP Electronics Technology Workshop (ETW), Greenbelt, MD, June 15-18, 2020 13

 Contrary to MnO2, CPTCs are degrading 
with time due to thermo-oxidative processes.
 The rate of degradation depends on part type.
 ESR is most sensitive to HTS and increases
exponentially with time after incubation period.
 In air: Ea = 0.62 eV ±0.17eV, but in vacuum 
Ea ~2 eV, so successful testing at 125 ºC for 1000hr guarantees 
long-term stability of ESR in space.
 Some auto CPTCs were stable for more than 4 khr at 125 ºC.
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Life Testing of CPTCs
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 No catastrophic failures during life testing and SSLT in 23 lots.
 CPTCs can operate reliably at high T at steady-state conditions.
 Increasing of leakage currents with time is similar to MnO2 caps.
 Post-test DCL measurements might fail the limit.
 Erratic behavior of currents in some samples/lots.

Monitored 1000 hr life testing at VR:
 11 lots at 85C and 125C, 10 to 20 pcs in a group.
 Monitored step stress life testing at VR:
 12 lots consequently at 85, 105, 125, 145, and 165C.
 200hr steps, 10 to 20 pcs in a group.
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Anomalous Transients
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 AT are caused by increased conductivity of 
Ta2O5 in discharged polymer capacitors.

 AT is more significant in dry CPTCs and at 
low temperatures. 

 The conductivity gradually (hours) 
decreases with time under bias. 

 The phenomena manifests as: 
 Increased 10x DCL limits compared to MnO2 

capacitors;
Parametric SCT failures; 
Variations of C and DF with voltage and time 

under bias;
 Increasing leakage currents at low T;
Anomalous charging currents (ACC);
 Failures during power cycling.

Examples of AT
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Mitigation of AT and 
Derating Requirements
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 Effects related to AT can be mitigated by:
Using special S&Q procedures.

- e.g. testing after bake for SCT, DCL at low T, 
C-V and DF-V, power cycling, etc.

Modification of polymer materials.
- might result in increasing of ESR.
Analysis of application conditions.

- operations at low T, especially cold start-ups.
Voltage derating to 30 - 50% of VR.

 Due to thermo-oxidative degradation in 
CPTCs, Tmax should be limited to 100 ºC.
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Recommendations for S&Q
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 General
CPTCs should be preconditioned before qualification testing.
Life testing, HTS, and TS should be carried out using capacitors 

soldered per specified MSL.  
Testing for FR is not necessary for the following reasons:

o Field failures rarely happen at life test conditions;
o Uncertainty in AFs creates orders of magnitude errors in FR;
o Due to derating, actual FRs are orders of magnitude below the mission 

requirements;
o Most microcircuits that has been successfully used for space are 

non-ER components.
 Screening (Gr.A) should include:
Surge current testing. The existing MIL-PRF-55365 requirements 

limiting maximum current after 1 msec can be used for CPTCs. 
Burning-in at 105 ºC 1.1VR for 40 hours. 



Recommendations for S&Q, Cont’d
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 LAT (or gr. B qualification test) should include:
 Life testing at 105 ºC, 1.1VR for 1000 hr.
 High temperature storage test, 1000 hr at 125 ºC.
 Thermal shock, 100 cycles between -55 and +125 ºC.
 Testing after baking at 125 ºC for 168 hours:

o Surge current test at -55 ºC, 25 ºC, and +85 ºC.
o Stability at low and high temperatures (including DCL at low 

temperatures). 
o Power cycling 100 cycles at RT and 0.75VR (5 sec ON/OFF 

using a power supply capable of rising voltage in less than 1 
msec).



Summary
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 Specific features of polymer compared to MnO2 capacitors 
include:
 Greater sensitivity to the absence of moisture.
 Intrinsic mechanism of ESR degradation during high T storage or 

operation in presence of oxygen.
 Anomalous transient phenomena.
 Smaller probability of catastrophic, short circuit failures.
 Increased probability of noisy behavior.

 Space systems would benefit from using CPTCs if:
 Selected parts pass space-level screening and qualification testing.
 Operating voltage is derated to 50% VR.
 Application conditions are analyzed regarding possible effects of AT 

especially at low T (special testing is necessary for missions 
requiring cold start-ups).
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