

1

NASA Electronics Parts and Packaging Program 2020 Electronics Technology Workshop

Stacking Connectors & Nickel Underplating

Joe Rosol Parts Engineer Wire – Cable - Connectors GSFC Code 562/ Genesis Engineering Solutions June 17, 2020

Acronyms

- Gold (Au)
- AXON Cable, Montmirail, France (AXON)
- Computer-Aided Design (CAD)
- Department of Defense (DoD)
- Electrical, Electronic & Electromechanical -Instruction (EEE-INST-002)
- Electroless Nickel Immersion Gold (ENIG)
- European Space Agency (ESA)
- Foreign Object Debris (FOD)
- Giga byte per second (Gb/s)
- Goddard Space Flight Center (GSFC)
- Hertz (Hz)
- Interconnect Devices, Incorporated; a division of Smiths Interconnect; Kansas City, Kansas (IDI)
- Low-Level Contact Resistance (LLCR)
- Mixed Flowing Gas (MFG)
- Minimum Order Quantity (MOQ's)
- Millimeters (mm)

- Milli-Ohms (m-Ohms) (mΩ)
- Millisecond (msec)
- Nanometers (nm)
- National Aeronautics and Space Administration (NASA)
- Nickel (Ni)
- Root Mean Square (RMS)
- Parts Per Billion (ppb)
- Printed Wiring Board (PWB)
- Airborn connector interposer product designator (RZ)
- Samtec Connector designator for a female ground plane connector (QFSS)
- Samtec Connector designator for a male boundary layer connector (QMSS)
- Surface Mount Technology (SMT)
- Scanning Electronic Microscope (SEM)
- Eighty-five degrees Celsius/Eighty-five percent relative humidity (85/85)

Connector Selection

- o Military, NASA, ESA, DoD
 - Proven designs
 - Designed for high reliability
 - Flexible features
 - Wide range of usage
 - Favorable contact coatings
 - Corrosion resistant
 - "Universally Accepted" qualification and screening
 - For space/vacuum use, modifications are prudent
- o Commercial
 - Options go beyond what's in mil-specs
 - Fill very specific needs
 - Evaluate design for high-reliability
 - Interpret factory qual reports
 - Determine appropriate screening
 - Check spaceflight heritage
 - Justify usage to the project, if rejected by parts engineering
 - Bain of a parts engineer's existence

Samtec

- $\circ~$ The Swiss-Army Knife of the connector industry
- o Pros:
 - Low cost
 - Molded insulators
 - Many plating options
 - Quick-turn modifications (high MOQ's?)
 - User-friendly web site
 - Download CAD formats
 - Signal integrity support
 - On-line qual reports
- o Cons
 - Mostly stamped & formed contacts
 - Rough asperity areas
 - FOD/shards attached to insulators
 - Insufficient gold plating
 - Many lack fastener mounting options
 - Difficult to measure individual contact insertion & withdraw forces

Samtec Ground Plane Connector Case Study

- o QMSS & QFSS
 - ~\$20 each
- o Unique design with 25-mil pitch
- o Single ground plane or shielded on both sides of stripline
- o "Rugged" version
- o 25Gb/s performance @ 10mm stack height
- Au plating, over 50µ-inch Ni (non-standard)
 - Signal Contact Areas 30µ-inch
 - SMT Solder Tails & Shields 10µ-inch

Mezzanine Processor Board Application

Motherboard

Daughterboard

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 15-18, 2020.

Signal Contacts

QFSS Tine Surface

QMSS Tine Surface

- Contact surfaces run along shear planes
- Goal is to minimize the burr (break) surface, maximize the parallel burnish lines
- o Break surface is higher than the burnished

QMSS Male Tine – Non-flexing

GSFC each axis

- Sine Burst: 20Hz, 20g, 5 Peak Cycles
- Sine: 20-100Hz, 12.5g, 2 octaves/min
- Random: 20-2000 Hz, 14.1 g_{RMS}, 2 min
- Visual & SEM Analysis
 - Remove connectors from boards
 - DPA to get access
- Optical Observations
 - A few had no discernable damage
 - No nickel underplating revealed
 - Mating wear tracks seen in many cases
- o SEM
 - Several pins exhibited exposed nickel
 - No exposed brass
- Connectors saw one mating cycle

Samtec each axis

GSFC vs Samtec Dynamic Qual

- Shock: 100g peak, 6msec, 3X
- Sine: 20-100Hz, 12.5g, 2 octaves/min
- Random: 50-2000 Hz, 7.56 g_{RMS}, 2 hours
- Mixed Flowing Gas
 - 10 ppb chlorine
 - 200 ppb nitrogen oxide
 - 10 ppb hydrogen sulfide
 - 100 ppb sulfur dioxide
- Low-Level Contact Resistance (LLCR)
 - R increase after 10 days <15 m Ω
- \circ Samtec guidelines Δ LLCR
- <= +5.0 mOhms:------ Stable +5.1 to +10.0 mOhms:----- Minor +10.1 to +15.0 mOhms: ----- Acceptable +15.1 to +50.0 mOhms: ----- Marginal +50.1 to +2000 mOhms: ----- Unstable >+2000 mOhms: ----- Open Failure

GSFC Dark-Field Optical - QFSS

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 10 Greenbelt, MD, June 15-18, 2020.

GSFC Dark-Field Optical - QMSS

Arrow: contact locations

Wear tracks

GSFC Optical – QMSS Wear From Dynamic Displacement

Bright Field

Dark Field

Approx. 150nm (0.006") excursion

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 12 Greenbelt, MD, June 15-18, 2020.

GSFC SEM – QMSS Wear From Dynamic Displacement

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 13 Greenbelt, MD, June 15-18, 2020.

GSFC SEM – QFSS Wear From Dynamic Displacement

Exposed nickel in center of burnish crater

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 14 Greenbelt, MD, June 15-18, 2020.

AXON Micro-D after 60 mating cycles

Airborn Micro-D after 100 mating cycles

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 15 Greenbelt, MD, June 15-18, 2020.

Exposed Ni After Wear Track Analyses

Omnetics nano after 100 mating cycles

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 15-18, 2020.

17

Single Contact Point - Exposed Nickel Risk?

- Au wear mechanism: polishing/burnishing
- Post-vibration from GSFC analysis shown inconsistent normal forces via visual inspection
- o Samtec normal force still high enough to expose nickel
- Assuming the Samtec qual test exposed nickel at the asperities
 - Post-Mixed flowing gas test revealed <15 m Ω electrical resistance increase
- Single-point contact applications attractive option (interposers)

Airborn RZ

Smiths/IDI

Samtec Nickel Underplate Evaluation

$\circ~$ Samtec uses two nickel underplates under their gold contacts

- Electroless (some fixed contacts)
- Sulfamate (all flexible contacts)
- o Samtec offered test coupons
 - 2.5" x 4.0"
 - Base metal the same brass alloy
 - Nominal 50µ-inch thickness
- Artificially–age the nickel to recreate long-term ambient air exposure: 85/85 for 48 hours
- Measured change in surface resistivity not conclusive difficult to quantify for nickel plating on brass
- Use Auger electron spectroscopy or Ellipsometry to detect an oxide or a dielectric surface

Two Views – Same Set of Plates

To be presented by Joe Rosol at the 2020 NEPP Electronics Technology Workshop (ETW), NASA GSFC, 19 Greenbelt, MD, June 15-18, 2020.

Conclusion

20

- Single point contacts are common in high-density & balanced (high-speed) interconnects
- Single point contacts prohibited EEE-INST-002
 - While fretting is found in approved multi-point contacts
 - the normal forces vary variable fretting
 - Gold-on-gold still exists
 - Multiple parallel electrical paths
- o Interposer PWB pads
 - Electrolytic hard gold preferred
 - Electroless Nickel Electroless Palladium Immersion Gold?
 - Electroless Nickel Immersion Gold? (ENIG)
 - Hot Air Solder Levelling?
- Applies to compliant pin in ENIG or gold plating
- Do we accept any single point contacts based on the premise that gold-on-nickel or nickel-on-nickel asperities allow acceptable contact resistance? What risk posture?
 - Test exposed surfaces for oxidation
 - GSFC asperity test for LLCR after 85/85 and MFG

End of Presentation