

Lyudmyla Panashchenko

Failure Analysis Engineer

NASA GSFC Code 562 EEE Parts and Packaging

June 17, 2020

NEPP ETW 2020

Selection of Parts for DPA

- NASA GSFC projects follow EEE-INST-002 for selection and testing of EEE parts
- EEE-INST-002 defines when DPA should be performed based on combination of factors that includes commodity type, quality level of part type selected and project level (risk tolerance)

			Level 1		Level 2			Level 3	
Screen	Test Methods and Conditions	К	H	Non-QML 5/	К	н	Non-QML 6/	H	Non- QML 6/
12. Radiographic 7/	MIL-STD-883, Method 2012		Х	Х		x	Х	Х	х
13. External Visual 1/	MIL-STD-883, Method 2009			Х			Х	х	х
14. Destructive Physical Analysis (DPA)	MIL-STD-883, Method 5009	X	X	Х	Х	x	Х	Х	Х

Table 2 SCREENING REQUIREMENTS FOR HYBRID MICROCIRCUITS (Page 2 of 2)

Table 3A CERAMIC CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

	Quantity (Accept Number)		nber)	
Inspection/Test	Test Methods, Conditions, and		Level	
	Requirements	1	2	3
Group 4		12(0)	5(0)	N/A
Humidity Steady State, Low Voltage 6/	MIL-STD-202, Method 103, Condition A and MIL-PRF- 123, Group B	х	х	
Group 5 Solderability	MIL-STD-202, Method 208	5(0) X	3(0) X 5/	N/A
Destructive Physical Analysis	EIA-469	х		

About S-311-M-70

• DPA commonly performed per MIL-STD-1580:

Destructive Physical Analysis for Electronic, Electromagnetic, and Electromechanical Parts

- NASA GSFC uses an internal S-311-M-70 document based on MIL-STD-1580 with several amendments:
 - Sample size
 - Prohibited Materials Analysis (PMA)
 - Capacitors
 - Ferrite beads

DRIGINATOR: Bruce Meinhold, MEI Technologies Inc.	DATE	FSC: 59GP
REVIEWED: Alix Duvalsaint, QSS Group Inc.		Specification for the Performance of
CODE 562 APPROVAL: Marcellus Proctor, NASA GSFC		Destructive Physical Analyses (DPA)
ADDITIONAL APPROVAL: Dr. Henning Leidecker, NASA GSFC		
ADDITIONAL APPROVAL:		S-311-M-70
NATIONAL AERONAUTICS AND SPACE ADMINISTRA GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 CAGE CODE: 25306	TION	
GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 CAGE CODE: 25306		

Tests Most Commonly Performed During Destructive Physical Analysis (DPA)

External Visual

External Prohibited Materials Analysis (PMA)

X-Ray

PIND

Hermeticity

Internal Gas Analysis (IGA)

Internal Visual

Wire Pull

Die Shear

Wire necking above the gold ball bond – reduced wire pull strength

Gross Leak failure of diode – red dye penetrated through a crack to the die NEPP ETW 2020

Corrosion of aluminum pad due to moisture ingress and elevated temperature exposure during screening

(*) stats for 2020 are incomplete

Total number of DPAs per year

Overall DPA Failure Rate

DPA Failures for 2017-2020*

(*) stats for 2020 are incomplete

DPAs by Part Type

DPA Failure Rate by Part Type

Failures Rate by Part Type 2017-2020*

(*) stats for 2020 are incomplete

DPA Failure Rate by Part Type (2017-2020 Lumped)

(2017-2020 Lumped)

Disposition of DPAs for 2017-2020*

Statistics of FAs for 2017-2020*

- Perform ~20 failure analyses (FA) a year, mostly for NASA GSFC projects
- FA is usually requested when EEE part has been identified as suspect or faulty during assembly inspection or testing
- Most common EEE parts in FA:
 - Microcircuits 26%
 - Capacitors 26%
 - Hybrids 11%
- Most common failure categories:
 - Electrical Over Stress (EOS) 33%
 - Manufacturing Defects 28%

Examples of FA: Electrical Overstress Failures (EOS)

MOSFET die overstressed by external electrical stimulus

Multilayer ceramic chip capacitor with cracking as a result of internal short

Infrared image of die showing hot spot after an ESD event

NEPP ETW 2020

Examples of FA: Manufacturing Defects

Aluminum diffusing into the silicon indicating a high temperature event

NEPP ETW 2020

Magnetic device with wire pinched at the body and rubbing through the insulation

Nichrome resistor with defects in etched pattern

Summary/Conclusions

- DPA based on MIL-STD-1580 is a key element of GSFC Parts Selection/Screening Protocols per EEE-INST-002
 - Overall rate of non-conformances found during DPA for the past 4 years has been 42%
 - GSFC employs a DPA Failure Review Board to review/disposition lots that do not pass DPA
 - Options include reject lot, use as-is or screen/reprocess for the observed condition to provide assurance for the intended application
 - 3% of all lots are rejected for flight use
- FA in support of NASA programs
 - Hybrids and Capacitors make up 52% of all FAs
 - EOS and Manufacturing defects account for 61% of FA findings

Questions?

Multilayer ceramic chip capacitor with a cone-shaped piece of top plate separated after internal electrical short

Acronyms

- CSAM C-Mode Scanning Acoustic Microscopy
- DPA Destructive physical Analysis
- EOS Electrical Over Stress
- EEE Parts Electrical, Electronic and Electromechanical Parts
- ESD Electro Static Discharge
- FA Failure Analysis
- GSFC Goddard Space Flight Center
- IGA Internal Gas Anlysis
- NASA National Aeronautics and Space Administration
- PIND Particle impact Noise Detection
- PEM Plastic Encapsulation Microcircuit
- PMA Prohibited Materials Analysis