

SMD Class D standard MAR

Jesse Leitner, Chief SMA Engineer, GSFC Agency-wide team including APL and SWRI

SAFETY and MISSION ASSURANCE **DIRECTORATE** Code 300

Outline

- Background
- Agency Team
- Class D principles
- Significant departures from common practices
- Other highlights
- Summary

Background

- Numerous activities have taken place over the past several years to address the fact that Class D practices across the agency have differed little from those for Class A, B, or C missions
- Most of these activities have not resulted in substantial efforts to tangibly change how we perform Class D developments
- The result is that we have been limited in our ability to push the boundaries for moderate-risk/high-payoff missions
- This development effort has taken a very detailed view of the practices that are in place to ensure safety and mission success, and tunes them into risk-driven activities that accept developers' approaches in contrast to the current "do it the way we always have" approaches that have been difficult to depart from.
- This approach emphasizes the processes that provide the most risk reduction payoff and avoids the "feel-good" types of requirements that are abundant for Class A and Class B missions, where there is significant tolerance for overrun.
- This approach further emphasizes developer standard practices as opposed to prescriptive "do it our way" practices.
- At this point, there will be no choice, no matter what the risk posture, but to implement a "true Class D" for most cubesat missions and a range of other highly resource-constrained missions that will soon be in development

Agency Team

- GSFC: Jesse Leitner (lead), Ron Perison
- LaRC: Joey Patterson, Don Porter
- JPL: Tom Ramsey, Sammy Kayali, Naomi Palmer
- Glenn: Cynthia Calhoun
- MSFC: Rodney Key, Kelly Bellamy, Michael Giuntini, James Kissell, Keith Dill
- ARC: Steve Jara, Don Mendoza
- APL: Steve Pereira, Rick Pfisterer
- SWRI: Joerg Gerhardus, John Stone

Class D Principles: Dos & Don'ts

• <u>Do</u>:

- Streamline processes (less formal documentation, e.g., spreadsheet vs. formal software system for waivers, etc.)
- Focus on tall poles and critical items from a focused reliability analysis
- Tolerate more risk than A, B, or C (particularly schedule risk)
- Capture and communicate risks diligently
- Rely more on knowledge than indirect requirements
- Put more decisions into the hands of the engineers on the floor.
- Have significant margin on mass, volume, power (not always possible, but strongly desirable)*
- Have significant flexibility on performance (level 1/level 2) requirements (not always possible, but strongly* *desirable)

• *Don't*:

- Ignore risks!
- Reduce reliability efforts (but do be more focused and less formal)
- Assume nonconforming means unacceptable or risky
- Blindly eliminate processes

While the impression may be that a Class D is higher risk from the outside, if implemented correctly (and consistent with the intention), in reality the extra engineering thought about risk may actually reduce the practical risk of implementation.

Significant departures from common practices (1/3)

- GMIPs (consistent with NPR 8735.2B)
 - No predefined set of GMIPs
 - Based on upfront negotiation considering
 - assessment of developer's own inspection points
 - developer identified risks
 - project identified risks; and furthermore in response to events, such as failures, anomalies, and process shortfalls that prompt a need for further inspection.
 - Will be coordinated with the project to maximize efficiency and minimize schedule impact
- Inherited items process
 - Allows a holistic, risk-based process based on
 - Prior history
 - Changes from previous (in H/W, S/W, operation, environment)
 - Past anomalies
 - Allows prior processes to be used without waivers
 - Decisions to use or impose additional tests, etc., based on risk

Significant departures from common practices (2/3)

- Workmanship
 - Workmanship standards (industry and NASA) provided as guidance, developer standard practices allowed
- EEE parts
 - Follows NASA-STD-8739.10 for Class D: Level 4 = COTS parts with no additional screening
 - Guidance provided to consider:
 - Prior usage of the part and qualification for the specific application
 - Manufacturing variability within lots and from lot to lot for parts
 - Traceability and pedigree of parts
 - Reliability basis for parts.
 - Parts stress/application conditions

Significant departures from common practices (3/3)

- Radiation
 - Emphasis on radiation-tolerant design
 - Part-by-part analysis and testing otherwise
- Printed Wiring Boards
 - Use own preferred standard
 - Project retains coupons or spare boards until mission disposal

Minor departures from common practices

- ARB/MRB/FRB
 - Government notified and invited to participate in type I (form, fit, function)
 - Type II Government given access to, but timely notification not required
- Reliability
 - Project completes reliability analysis (e.g., FTA, FMEA) for faults that may lead to injury to personnel or the public, or produce orbital debris, or that may affect host platforms
 - Parts stress and derating analysis per EEE-INST-002 or comparable
- Software assurance
 - NASA-STD-8739.8 required
- Software safety
 - Safety critical elements determined from the hazard analysis and range requirements
- GIDEP: project shall take action to mitigate the effects of alerts on the project

Other elements

- Lifting
 - Vendor practices if command media exist
 - NASA-STD-8719.9 for all others
- ESD: ANSI/ESD S20.20-2007
- Lead-free and whisker controls required
- Assurance Plan for new digital electronic designs (FPGAs, ASICs, etc)
- Planetary Protection for outside of earth orbit
- Cybersecurity and Command Link Protection

Review and Approval Process

- Within MAR development team reviews
- Team Center/organization outreach
- Program Office reviews
- SMD technical area reviews
- OSMA discipline review
 - OSMA signoff
- The MAR is now an Appendix in SMD'S Class D Implementation Plan
- There is still debate in HQ about elements of the Implementation Plan, outside of the MAR that is holding up approval of the document

Summary

- A Standard Mission Assurance Requirements document has been produced to represent the general set of requirements to impose on SMD Class D missions
- This is the first such document that truly addresses significant costs and programmatic risks that were not really addressed in the past.
- The document has completed approval process in HQ/OSMA and is now baselined as part of a new SMD Class D Implementation Plan. We are waiting for unrelated issues with the Implementation Plan to be worked out.

Backup materials

SAFETY and MISSION ASSURANCE₁₃ DIRECTORATE Code 300