

R-Gentic-SEAM Interface and Harmonization

Kaitlyn L. Ryder NASA Goddard Space Flight Center, and Vanderbilt University 6/18/2020

This work is sponsored by NEPP Grant and Cooperative Agreement Number 80NSSC20K0424 Acronyms

DDD **Displacement Damage Dose** GCR **Galactic Cosmic Rays** GSFC Goddard Space Flight Center GSN **Global Structuring Notation** NEPP **NASA Electronic Parts and Packaging** SEAM Systems Engineering and Assurance Modeling SEE **Single Event Effects** SEB Single Event Burnout SEGR Single Event Gate Rupture SEL Single Event Latch-up SysML System Modeling Language TID **Total Ionizing Dose**

- Motivation: Why Interface R-Gentic and SEAM?
- Review of R-Gentic Website
- Review of the SEAM Tool/SysML+Fault Models
- Using R-Gentic to Streamline SEAM Project Creation
- Update on Synchronizing Typical Radiation Effects Between R-Gentic/SEAM
- Future Steps

- Current project creation in SEAM requires either starting from a blank project or creating a duplicate of an existing project
- Starting from a blank project is time consuming and can be overwhelming for new users
- Starting from an existing project results in having to make many unnecessary modification, and relies on users having multiple projects to choose from
- R-Gentic's output may be useful in creating a seed for new projects that only contains EEE parts of interest
 - Reduce the complexity and time-consumption of making new projects

REVIEW OF R-GENTIC WEBSITE

- <u>https://vanguard.isde.vanderbilt.edu/RGentic/</u>
- Developed largely by Michael Campola at NASA GSFC
- Allows users to input general information about their mission and EEE parts, and provides basic guidance on typical radiation risks that may apply
- Does not replace need for environment modeling, radiation effects testing, or the expertise of a radiation effects engineer
- R-Gentic Process:
 - 1. User Mission input orbit, mission lifetime, risk tolerance
 - 2. Environment Comparison radiation environments from known missions with similar orbits
 - 3. Device Response input device types of interest, basic radiation concerns are given
 - 4. Guidelines major concerns are clarified, radiation specific class guidelines are given

6/18/2020

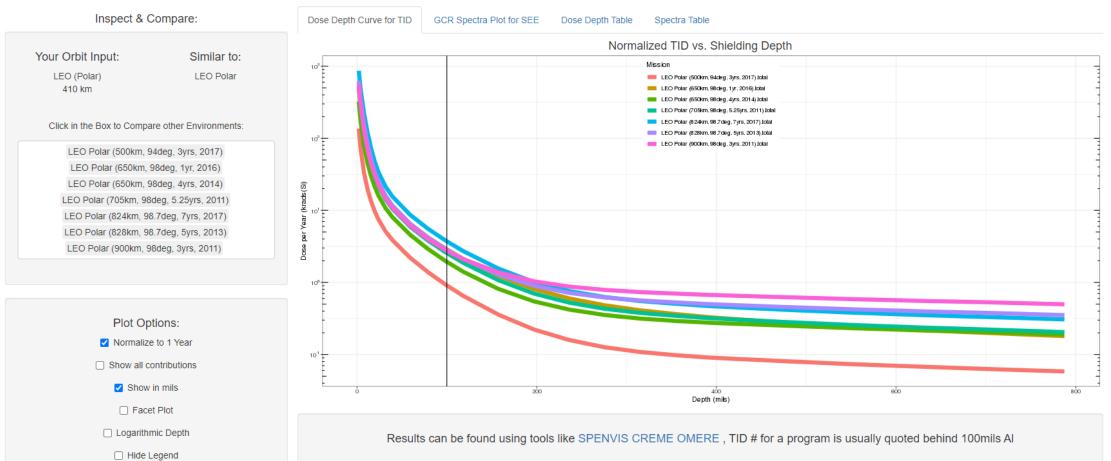
1. User Mission

R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guidelines

Notional Radiation Risks

Orbit: Type in Altitude(km): 410 LEO (Polar) -Class: Sun Cycle А -Solar Max • Architecture: Lifetime: Single spacecraft, no redundancy O Short (< 1 Year)</p> Single spacecraft, with redundancy Medium (1-3 Years) O Swarm O Long (> 3 Years)

Mission Description:


Overview:

Environment Severity: High						
Threat	Presence					
Trapped Electrons	Moderate					
Trapped Protons	Yes					
Solar Protons	Yes					
Galactic Cosmic Rays	Yes					
EEE Focus on: Degradation & Single Event						

2. Environment Comparison

R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guidelines

What does a Similar Environment Look Like?

6/18/2020

2. Environment Comparison

R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guidelines

What does a Similar Environment Look Like?

6/18/2020

3. Device Response

🚭 R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guideline

How do Similar Devices React?

Devi	ice:	Data:
Assign a Reference De	esignator or Unique ID	NASA Radiation Report Resource Links (first place to look for your part number): NASA GSFC Radiation Effects and Analysis Group PMPedia
Family:	Function:	
Opto-electronics	LED •	For Your Device Inputs of:
Enter Device Process if Known (for documentation)		Opto-electronics LED Mission specific Radiation Concerns by Family are:
N/A		TID, DDD, SEB, SEGR
Critica Cutow (Device degradation/los Medium (Some degradation or upso High (Device must perform within s	ss of functionality acceptable) ets acceptable, but no loss of device)	Typical responses: Tend to be significantly impacted by DDD, which takes form in CTR degradation and/or power output for LEDs. Can exhibit transients as well depending on application.

4. Guidelines

R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guidelines

The typical line of radiation questioning for: Opto-electronics N/A LED with regard to TID, DDD, SEB, SEGR	
No concern for SEB. No concern for TID. No concern for SEGR. Can the design deal with reduced optical output?	Considered for Medium criticality component on a Single spacecraft, with redundancy Your Part Radiation concerns Greatest System Rad Concern As-is Risk Post Rec Risk DUT1 TID, DDD, SEB, SEGR Degradation & Single Event Medium Medium
riticality vs. Environment: evel 1 or 2, rad hard suggested. Full upscreening for COTS. Fault tolerant designs for COTS. ASA Class A Guidelines:	Recommendation and Guidelines: Most LEDs have slow on/off times making Single events negligible on the power output of the device.
omponents shall be radiation-hardened with guarantees for TID, DDD, and SEE performance designed to meet mission requirements for e specified orbit/trajectory. All required radiation testing (TID, DDD, and/or SEE) shall be on the flight lot and conducted at the part level. ault-tolerant designs required for COTS parts. Impacts constrained to cost and schedule.	Please send questions and feedback to: michael.j.campola@nasa.gov Additionally a Model Based Mission Assurance Tool Can extend this analysis - SEAM

Save to Summary Sheet 🛛 Add my next part 🔹 🛃 Download Summary Sheet

Your tailored table summary of saved runs has 1 Rows:

Orbit	Altitude	Sun Cycle	Class	Mission Life	Mission Architecture	Environment Severity	RefDes	Device Family	Process	Function	Device Criticality
LEO (Polar)	410	Solar Max	А	Medium	Single spacecraft, with redundancy	High	DUT1	Opto-electronics	N/A	LED	Medium

4. Guidelines

R-GENTIC Acronyms 1. Mission 2. Environment 3. Device 4. Guidelines

What should you do to bring down the risk?

The typical line of radiation questioning for: Clock/Timing CMOS PLL with regard to TID, SEU, MBU, SEFI, SEL

Device may exhibit Latch-up. Is there redundancy? Will you be able to power cycle? Yes. Can you live with shifts in operating conditions (primarily in voltage countrolled oscillator - Frequency Range)? Is possible depending on configuration/topology. (Stuck in wrong state) Concern for all-digitial PLLs.

Criticality vs. Environment:

Level 1 or 2, rad hard recommended. Full upscreening for COTS. Fault tolerant designs for COTS.

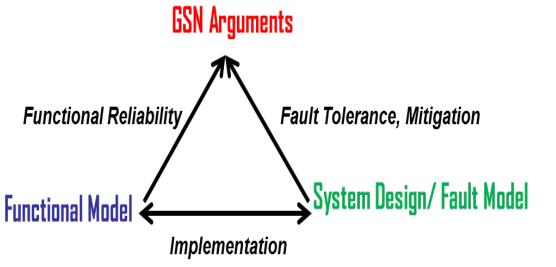
NASA Class A Guidelines:

Components shall be radiation-hardened with guarantees for TID, DDD, and SEE performance designed to meet mission requirements for the specified orbit/trajectory. All required radiation testing (TID, DDD, and/or SEE) shall be on the flight lot and conducted at the part level. Fault-tolerant designs required for COTS parts. Impacts constrained to cost and schedule.

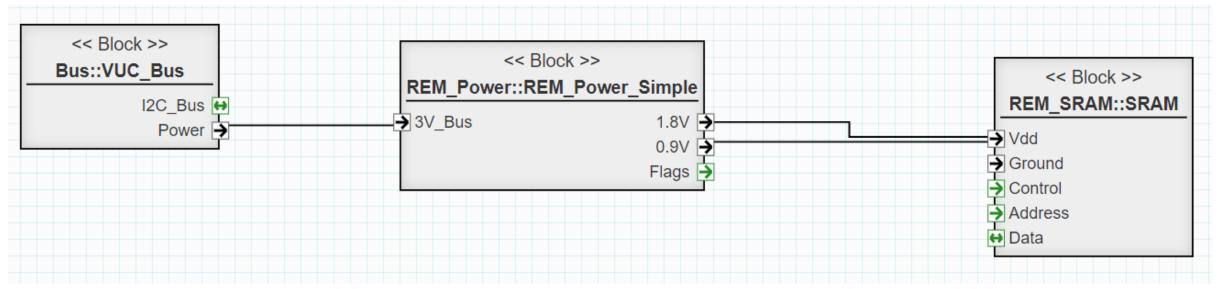
Considered for High criticality component on a Single spacecraft, with redundancy								
	Your Part	Radiation concerns	Greatest System Rad Concern	As-is Risk	Post Rec Risk			
	DUT3	TID, SEU, MBU, SEFI, SEL	Degradation & Single Event	High	High			
		Recomn	nendation and Guidelines:					
		Testing for flig	ght application highly recommende	d				
		Diesse send questions	and feedback to: michael.j.campola	Mon esergia				
		· · · · · · · · · · · · · · · · · · ·	sion Assurance Tool Can extend th		EAM			

Save to Summary Sheet 🛛 Add my next part 🔹 Download Summary Sheet

Your tailored table summary of saved runs has 3 Rows:

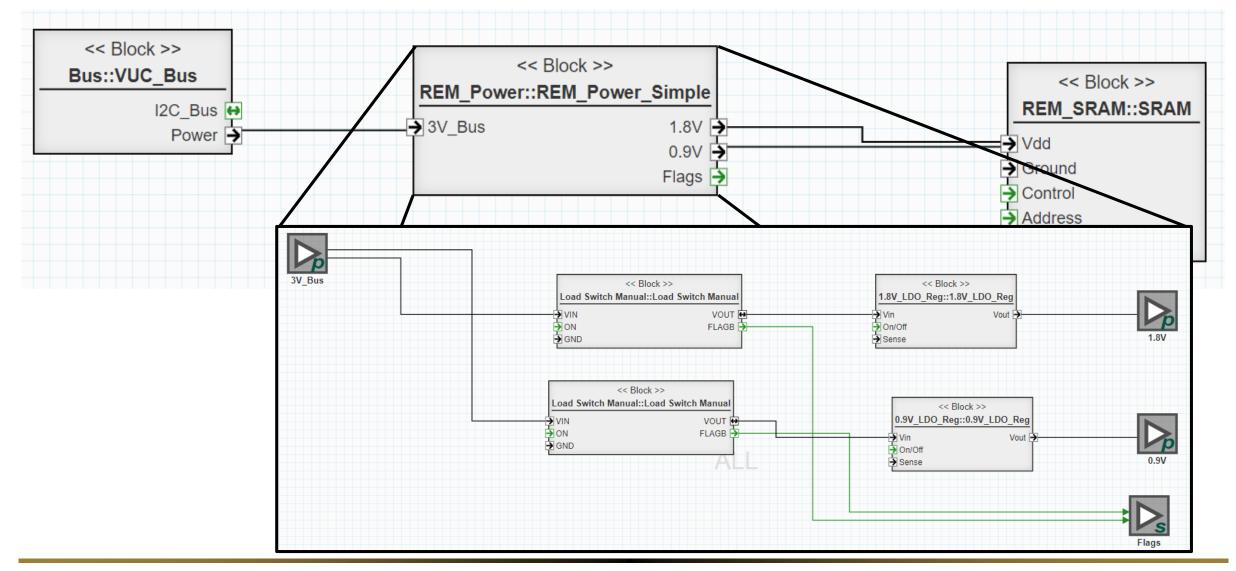

Orbit	Altitude	Sun Cycle	Class	Mission Life	Mission Architecture	Environment Severity	RefDes	Device Family	Process	Function	Device Criticality
LEO (Polar)	410	Solar Max	А	Medium	Single spacecraft, with redundancy	High	DUT1	Opto-electronics	N/A	LED	Medium
LEO (Polar)	410	Solar Max	А	Medium	Single spacecraft, with redundancy	High	DUT2	Discrete Power	CMOS	HEMT	High
LEO (Polar)	410	Solar Max	А	Medium	Single spacecraft, with redundancy	High	DUT3	Clock/Timing	CMOS	PLL	High

REVIEW OF SEAM TOOL/SYSML+FAULT MODELS


- <u>https://modelbasedassurance.org/</u>
- "SEAM (Systems Engineering and Assurance Modeling) is a web-based collaborative modeling platform for modeling assurance case integrated with the models of the system"
- Platform for logical modeling of systems
 - *Not* a physical model, SPICE model, etc.
- Available Models:
 - Global Structuring Notation (GSN) models
 - Functional decomposition models
 - System block diagram models (SysML)/Architectural models
 - Fault Models

Example SysML – Architectural Model

Vanderbilt Engineering



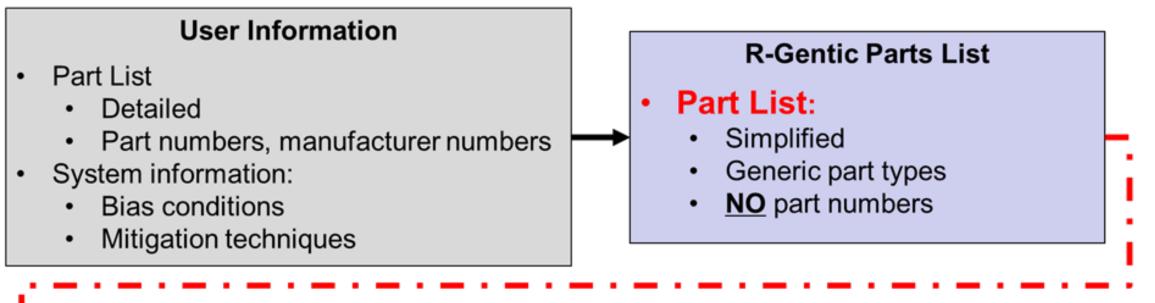
- Block diagram of basic system (from SEAM Tutorial project)
- Shows general flow of power and data through the system
- Each block can contain more levels of abstraction

Example SysML – Levels of Abstraction

Vanderbilt Engineering

Part Library Templates

• Vanderbilt Engineering


- SEAM allows for building project-specific libraries
- Include commonly used part types, failure labels, etc.
- Reduces modeling time

pto-electronics_initial	<< Block >> LED::Opto-electronics	<< Block >> Photodiode::Opto-electron		electronics	
	Power Outpu A	→Input Pow	Power	Power	
<< Block >> Opto-Electronics	<< Block >> Discrete LED::Opto-Electr Power Ou	< Block > ronics Photodiode::Opto-I tpu		Opto-Electronics Outpu	<< Block >> Diode::Opto-Electronics
<< Block >> Power_initial	<< Block >> DC to DC::Power Power Power	< Block >> Diode::Power_initial Prowerin Power	<< Block >> FET::Power → Gate Drain ■ Source		
<< Block >> Power					
<< Block >> Digital	<< Block >> Digital::Digital Power Output Input(s)	<< Block >> Flip-Flop::Digital Power Output Dinput(s)	<< Block >> Logic Gate::Digital Power Output Input(s)	<< Block >> Multiplexor::Digital Power Output P Input(s)	<< Block >> Comparator::Digita Power Output Input(s)
	<< Block >> PLL::Digital → Power Output	<< Block >> PWM::Digital Power Output	<< Block >> Driver::Digital	<< Block >> Receiver::Digital Power Output	<< Block >> FPGA::Digital → Power Output
	Input(s)	Input(s)	Input(s)	Input(s)	Power Outpu Dinput(s)
<< Block >> Memory	<< Block >> Memory::Memory → Power Data →	<< Block >> SRAM::Memory Power Data >	<< Block >> SDRAM::Memory Power Data	<< Block >> EEPROM::Memory Power Data>	<< Block >> NAND Flash::Memory Power Data

USING R-GENTIC TO STREAMLINE SEAM PROJECT CREATION

SEAM Fault Model Templates

- Simplified part type models
- Contain generalized radiation-induced faults for typical part types

SEAM SysML Model

 User can interconnect part type models according to their design and complete system architectural models in SEAM

Vanderbilt Engineering **SEAM Project Library R-Gentic Parts List** << Block >> << Block >> LED HEMT PLL HEMT::Power PLL::Digital Criticality → Gate → Power Output 🗲 Medium High High H Drain → Input(s) ↔ Source SEL DDD SEB << Block >> TID SET Discrete LED::Opto-Electronics > Power Outpu... TID → Radiation concerns SEFI Gradual Power Change OR SEU DDD **Degraded Brightness Output Light** Power Failure Label **Power Port** Fault Anomaly **MBU**

6/18/2020

Part

20

To be presented by Kaitlyn L. Ryder at the NEPP Electronics Technology Workshop (ETW), Greenbelt, MD

Establishing Relationships between Tools

- **R-Gentic**
- Look-up table of parts and effects
- Generic parts list
- Information is descriptive, provides guidance
- No connection between components

• Project-specific part library

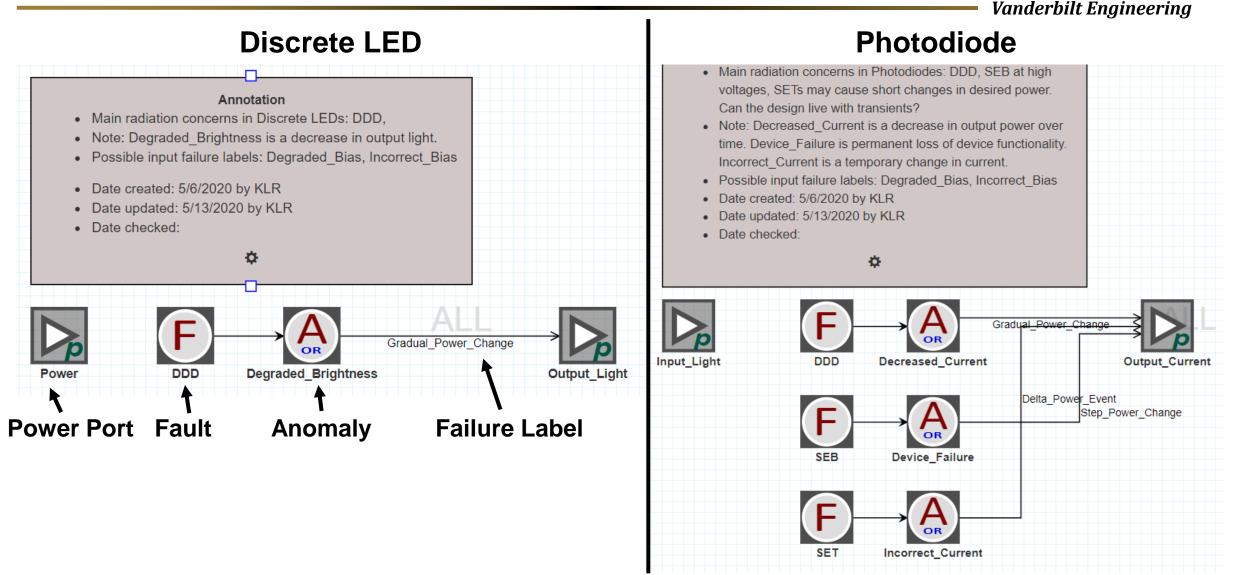
SEAM

- Information is Boolean, yes/no does an effect occur
- Shows connections between components

UPDATE ON SYNCHRONIZING TYPICAL RADIATION EFFECTS BETWEEN R-GENTIC AND SEAM

6/18/2020

R-Gentic Look-Up Table


• Vanderbilt Engineering

- Families Present (66 total part types):
 - Clocks/Timing (4 part types)
 - Digital (5 part types)
 - Discrete (4 part types)
 - Discrete Power (7 part types)
 - Discrete RF (8 part types)
 - Embedded (4 part types)
 - Interfaces (6 part types)
 - Linear (5 part types)
 - Logic (2 part types)
 - Memory (4 part types)
 - Mixed Signal (5 part types)
 - Opto-Electronics (4 part types)
 - Power Hybrid (4 part types)
 - Sensors (4 part types)

- Radiation Concerns Present:
 - Single Event Latch-up
 - Single Event Burnout
 - Single Event Transients
 - Single Event Function Interrupt
 - Single Event Gate-Rupture
 - Single Event Upset
 - Multiple Bit Upset
 - Total Ionizing Dose
 - Displacement Damage Dose

SEAM Global Part Library

FUTURE WORK

- Finish modifying R-Gentic look-up table
- Finish creating part templates in SEAM global library
- Create a new R-Gentic exportable csv that can be read into SEAM
- Modify SEAM to allow for uploading of exportable csv from R-Gentic
- Once interfacing between R-Gentic and SEAM is complete, the process for creating projects from scratch will be streamlined. Creating architectural models (SysML) and fault models of systems will be easier.