

NEPP ETW 2020

Application of SEAM to High-Performance Computing

M. Reaz, A. Witulski, B. Bhuva, N. Mahadevan, G. Karsai, B. Sierawski, R. Reed, R. Schrimpf Vanderbilt University

Acronyms and Abbreviations

Performance: COTS Components under Radiation in Space

Radiation Scaling, Modern Epitaxial Hardening by Technology Fabrication **Process** TMR – HDL Radiation Mitigation Hardening by Coding, EDAC Why COTS Design Work in Improved Space Dynamic Radiation Shielding – Hardening by Space Astronaut Shielding Environment Habitat Operation at Below Radiation Reduced Nominal Hardening by Spec **Parameters** Frequency

Devices in space that are primarily made of COTS component

Performance: COTS Components under Radiation in Space

□ Will software-based mitigation suffice?

STTR Phase I : Testing of COTS Systems in Space Radiation Environments

- NASA STTR 2019 Phase I Solicitation from Langley Research Center
- T6.05 Testing of COTS Systems in Space Radiation Environments

RFP: Investigate the feasibility of COTS electronics for *High Performance Computing (HPC)* in *space environments which are already heavily shielded*. It seeks strategies *based on a complete system analysis of HPC COTS* that include, but not limited only to, *failure modes* to mitigate radiation induced impacts to potential HPC systems in those highly shielded space environments.

- Computing in parallel over lots of compute elements
- Make many systems look and work like ONE large, powerful system
- Used for highly computational or data-intensive tasks
- Scalable parallelism is the key for running advanced programs efficiently, reliably and quickly
- Accelerates the creation and rendering of images, video, and animations. Performs fast math calculations

Accelerates the creation

- CPU Integer Core
- GPU Neon Core (Floating point calculation, vectorized data processing)
- Memory Cache, SRAM, EEPROM, FLASH, MMC, SD, ECC
- Interface µSD, µHDMI, Ethernet, JTAG, GPIO, PWM, Serial, SPI, and I2C

BBB ~ smallest building block of highperformance computing

- Open source community
- No heatsink on processor-SE Tests
- Good availability
- Low Power Arm Instruction

Model Based Assurance using SEAM for Complex Systems

Architecture- HPC System: BeagleBone Black (BBB)

System

Model

Mahmud et al., Application of SEAM to High-Performance Computing, NEPP Electronic Technology Workshop 2020

On/Off

Computational Components in HPC

11

Computational Components in HPC

Fault Propagation Models show how fault originate in components and their effects propagate through the structure of the system.

The radiation-effects such as 'TID' and 'SEL' are captured as fault: 'F' nodes

Fault ('F' nodes) leads to anomalies ('A' nodes) such as 'Bad_Data' or 'Low_Vout'

Anomalies lead to the functional response effects representing 'Degraded Operations' or 'Mitigation Mechanisms'

Heterogeneous Dependence of Failure: Random Access Memory (RAM) - BBB

Heterogeneous Dependence of Failure: Random Access Memory - BBB

A

DCDC1 р (F)

> Current_Limit R

> > Out of Spec Cu

I2C Port

- Communication with Integer Core

System is highly sensitive to power faults

- Low V_{out} to components (Downstream)

- High Current to Regulators (Upstream)

- Mitigation (Current Limit/ Power Reset)

Primary Component

- Linear Regulator/ Logic Switch

Instructions of Current Control - Integer Core

Functional Decomposition of the Operation of the BBB

Functional Decomposition of the BBB System

Primary LF econdary LF Secondary LF 1 2 Tertiary LF 3 Cmp 1 Cmp 2 Cmp 3 Cmp 4 F4 **F**2 F1 F 5 Cmp 3 Fault 3 F 6

Each component block is cross-referenced to the system model where the faults are originated, propagated, and in some case, mitigated.

Fault Tree Analysis

- Based on Functional Decomposition

Mahmud et al., Application of SEAM to High-Performance Computing, NEPP Electronic Technology Workshop 2020

Summary

Developed the logical model to calculate system response of a BBB

Functional decomposition of a system/ architectural model enables failure analysis

Developed model is easy to update to changing rules or change in radiation cross-section of a component