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Motivation for Architectural Modeling ADC Approach .

Vanderbilt Engineering

 Analog-to-Digital Converters (ADCs) are essential part of space systems

 Wide range of performance in terms of resolution, frequency, voltage
range, and peripheral circuits

 Need flexible modeling method that covers many commercial ADCs

 Behavioral level, not transistor level, for system (board-level) simulation
of TID impact

« Develop “architectural” approach for ADC simulation

 Need to explore validation methodologies for models of commercial
ADCs

 Incorporate enhanced portability by calibration for same class of parts
 Build repository of re-usable, parameterized sub-blocks of ADC

« Develop a wide range of radiation-enabled models for specific part-
number ADCs of interest to JPL
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Common ADC Architectures

Vanderbilt Engineering
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Performance Overview of Common ADC Architectures .

Vanderbilt Engineering

ADC architectures are modeled based on accuracy,
speed and power consumption, always a tradeoff

Architecture Latency Speed Accuracy Area
Flash No High Low High
SAR No Low- Medium- Low
Medium High
Pipeline Yes Medium- Medium- Medium
High High
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Features of Architectural Modeling Paradigm .

Vanderbilt Engineering

e System-level mixed signal simulation of component degradation due to
radiation

e Flexible to model large number of commercial ADCs easily

e Scalability allows to calibrate with minimal effort

e Compatible with statistical and functional error sources

e (Can be chosen for unipolar or bipolar (dual supply) conversion with a sign
bit

e Verilog-AMS models enable designers to reflect analog and digital behavior

e Compatible with advanced Questa-ADMS simulation platform
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ADC Architectural Model

 |Implements architecture based
algorithm with degradation added

 Takes user input and calls Spice
setups

e Evaluates static performance

 Evaluates dynamic performance

e Circuit functions performed using
Verilog re-usable code structures

Vanderbilt Engineering
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Typical Flow Chart of an Architectural Model
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Vanderbilt Engineering
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Recipe for architectural modeling of a commercial ADC .

Vanderbilt Engineering

Determine the Choose input parameters |dentify what
ADC algorithm ‘ Resolution, frequency, ‘ peripheral models

Flash, SAR, voltage are needed
Pipeline SPI, multiplexers
Validate pre-rad
and p";tlrad Add TID degradation to Assemble the
;no © appropriate elements of relevant models
performance - the model, like analog together in a top
against _da_tasheet comparators module of Verilog-
and radiation test AMS
data
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Mentor Questa-ADMS as a Simulation Platform

Vanderbilt Engineering
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Generic ADC Model vs Commercial ADC

Vanderbilt Engineering

Generic models are used with other sub-blocks to characterize a fully
functional commercial part
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Representative Results of a 3 Bit Flash ADC
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Vanderbilt Engineering

® DNL calculated from histogram
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Peripherals and Auxiliary Sub-blocks in ADC

Vanderbilt Engineering

« Commercial ADCs have peripheral interfaces and auxiliary sub-blocks
e Variations come from manufacturer and architecture
A parameterized sub-block repository is created by considering variations
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Calibration and Validation of Architectural Models

Vanderbilt Engineering

 JPL test results are used to calibrate SAR model (Accepted NSREC-2020
Abstract)
 Finding critical components and parameters sensitive to radiation
degradation 70 10
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Portability of Architectural Models
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Calibrated SAR ADC model is used to characterize TID degradation in
various commercial SAR ADCs

Vanderbilt Engineering
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Re-usable Core Blocks to Increase Resolution

Vanderbilt Engineering
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 1.5/2.5 bit stage Pipeline ADC
* Individual stages have degree of freedom in terms of input, output and gain
 Latencies and error correction logic unit consistent with input and output bits
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Stage Implementation

Vanderbilt Engineering

Vln_ -~y

|

DAC > Gain optimization

| » DAC scaling

» Bits/stage

Elements in a stage of pipeline ADC

Sample & Hold (S/H) implicitly available in stage building blocks,

Input range can be selected based on requirement

Calibrated building blocks allows user to choose any number of output bits per
Residue amplifier gain is optimized automatically for user defined resolution
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Results for a 3 Bit Pipeline ADC (1.5 Bit Stages)

Vanderbilt Enaineering
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Shift Registers and Error Correction Logic Unit (ECLU)
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Conclusions .

Vanderbilt Engineering

 Hundreds of ADCs with only 4-5 algorithms, architectural models
are re-usable and scalable for wide variety of commercial parts

« (Can be calibrated pre- and post-rad for commonly known ADC
figure of merits such as signal to noise, THD, etc.

* lonizing-dose-aware models can degrade the ADC for any
measurable range of TID

= Degradation can be expressed as distributions of parameters
= Can be used in Monte-Carlo system simulations

e Architectural models run quickly in electrical or degraded post-rad
system (board-level) simulations
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