OSMA Digital Evolution: R&M Physics of Failure (PoF) Handbook

Nancy J. Lindsey, Reliability & Maintainability Deputy Technical Fellow

NASA HQ/GSFC

For the PoF Handbook Development Team: Jeff Dawson (GSFC), Nobel Sindjui (GSFC), Doug Sheldon (JPL), Nancy Lindsey (HQ/GSFC), Anthony Diventi (NASA R&M Technical Fellow, and many NASA contributing authors

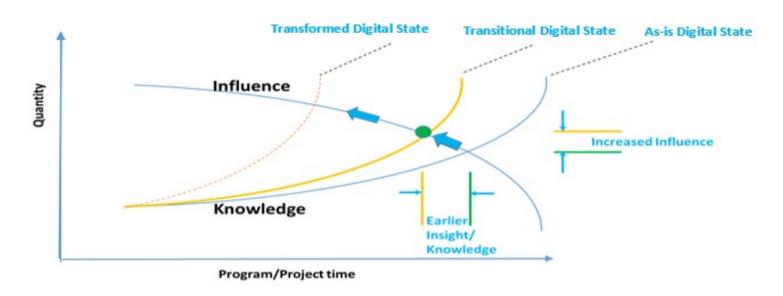
NEPP Electronics Technology Workshop

June 14, 2021

Outline

www.nasa.gov

- Motivation
- R&M Digital Evolution Plan
- What is Physics of Failure ?
- Physics of Failure (PoF) Handbook
- How NEPP and other Agency Partners can help
- Questions



Motivation

www.nasa.gov

Digital Evolution:

- Streamline the engineering processes and data acquisition/manipulation
- Share data created or collected from other missions and early design phase seamlessly
- Leverage tools and technology throughout NASA.
- Ensure Mission Success though knowledge and influence

R&M Digital Evolution Efforts

www.nasa.gov

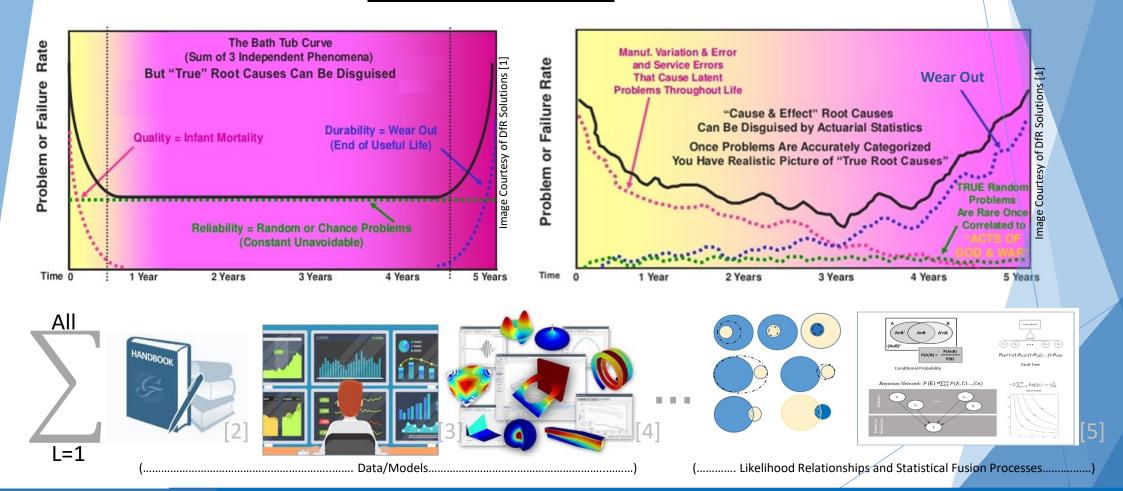
Phase1: Discover our Resources and Barriers

- ✓ Conduct Data Survey
- ✓ Communicate Findings
- Solicit Recommendations and Additional Data Sources

Phase 2: Enable and Advance Transitional Digital State

- Identify Strategies to fill data gaps via FAIR approaches
 - Data Mining for Data Sharing and Modeling Support within R&M
 - Develop and Share practice data on the R&M Knowledge Portal
 - Increase understanding of data needs and sharing with other disciplines
- Identify Strategies to mitigate implementation barriers
 - Data Mining for Data Sharing and Modeling Support
 - Develop and Share the value that can be anticipated from R&M Processes on the R&M Knowledge Portal
 - Increase outreach to engineering disciplines across NASA and beyond
- Identify Strategies to enable greater R&M Efficiency
 - Best Practice and product sharing
 - Model-Based R&M (reference models, libraries, etc.)
 - Physics of Failure

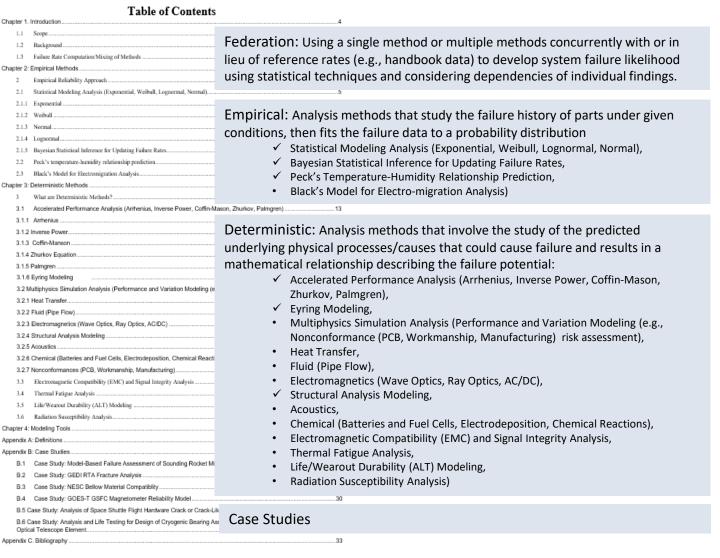
Phase 3: Achieve Digital Transformation



What is Physics of Failure (PoF)?

www.nasa.gov

The development of Root Cause Models that can be combined with Statistical Methods to move assumptions from the bathtub curve to more <u>realistic</u> and <u>complete</u> risk assessments.



R&M Physics of Failure (PoF) Handbook

www.nasa.gov

R&M Physics of Failure (PoF) Handbook

www.nasa.gov

Table of Contents Chapter 1. Introduction	4 4 4 5
2.1 Statistical Modeling Analysis (Exponential, Weibull, Lognormal, Normal)	Authors Sought for the following sections: 3.2 Multi-physics Simulation Analysis (Performance and Variation Modeling (e.g., Nonconformance risk assessment)) 3.2.2 Fluid (Pipe Flow) 3.2.3 Electromagnetics (Wave Optics, Ray Optics, AC/DC) 3.2.5 Acoustics 3.2.6 Chemical (Batteries and Fuel Cells, Electrodeposition, Chemical Reactions) 3.2.7 Non-conformances (PCB, Workmanship, Manufacturing) 3.3 Electromagnetic Compatibility (EMC) and Signal Integrity Analysis 3.4 Thermal Fatigue Analysis 3.5 Life/Wear-out Durability (ALT) Modeling 3.6 Radiation Susceptibility Analysis
3.5 Life/Weanus Durability (ALT) Modeling 3.6 Radiation Susceptibility Analysis Chapter 4: Modeling Tools Appendix A: Definitions Appendix B: Case Studies	24 25 26
B.1 Case Study: Model-Based Failure Assessment of Sounding Rocket Mission PWAs B.2 Case Study: GEDI RTA Fracture Analysis B.3 Case Study: NESC Bellow Material Compatibility B.4 Case Study: GOES-T GSFC Magnetometer Reliability Model B.5 Case Study: Analysis of Space Shuttle Flight Hardware Crack or Crack-Like Defect Data B.6 Case Study: Analysis and Life Testing for Design of Cryogenic Bearing Assemblies on the Optical Telescope Element. Appendix C. Bibliography	Case Studies Sought: Any/All 29 30 31 E James Webb Space Telescope 32 33 33

www.nasa.gov

Questions

