11111

NASA EEEE Parts Management Overview & Status

Jonathan Pellish NASA Electronic Parts Manager Deputy Manager, NASA Electronic Parts & Packaging (NEPP) Program jonathan.pellish@nasa.gov

June 2021

Mage Credit: NASA & JPL

Electrical, Electronic, Electromechanical, and Electro-Optical (EEEE) Parts & Radiation Engineering Capability

Outline

- Welcome to Susana Douglas (NASA GSFC), acting deputy, NASA Electronic Parts Management
- Overview of current capability structure
- Highlights of select capability efforts
- Radiation Test Facility Landscape & NASA's Radiation Block Buy
 - -Establish effective & efficient access for all Centers
- Interagency partnerships and whole-of-government efforts
 - -Defense Microelectronics Cross-Functional Team
 - -Department of Defense Trusted & Assured Microelectronics Program
 - -Missile Defense Agency
 - -Strategic Radiation-Hardened Electronics Council (SRHEC) (presentation at 2019 NEPP ETW)
- Summary and forward work

EEEE Parts & Radiation Engineering Capability Overview

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering To be published on https://nepp.nasa.gov/

Management Functions

Manage EEEE parts capability at the Agency level

- -Radiation effects on EEEE parts are in-scope
- -GSFC is lead Center, with support from JPL
- •Provide resources for Centers to acquire workforce expertise and a forum to coordinate activities with stakeholders (e.g., OCE, OSMA, etc.) and customers
- Track the state of the <u>Agency workforce</u>, including Center expertise, demand, and capacity
- •Support Agency policy and technical decision-making processes
- •Engage external partners as needed to support Agency objectives
- •Evolve management functions as needed

EEEE Parts & Radiation Management Strategies

- Define stakeholders, engagement options, and outreach opportunities that facilitate access and efficient use of limited resources
- Goal: to grow and maintain a diverse and inclusive workforce for the Nation's aerospace electronic parts and radiation effects engineering capability, serving our stakeholders and sought out by academic, government, industrial, and international partners
- How: by striving to recruit and retain diverse talent from across the Nation to include the best ideas and approaches to provide our customers and partners with exceptional electronic parts and radiation engineering services through enterprise-level integration

Play key roles in and across multiple domains

NASA EEEE Parts – Interfaces

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering

Parts Management Team Members

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering

Agency & Cross-Center Activity Highlights

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering

Radiation Test Facility Landscape & NASA's Radiation Block Buy

Focus on heavy ion single-event effects (SEE) testing

U.S. Domestic Radiation Facilities – SEE Testing

- Distributed across the United States and globe
 - -Located in more than 15 states across the U.S. (international facilities too)
- Split into several general categories
 - -High- (>100 MeV/amu) and low-energy (<50 MeV/amu) heavy ion
 - -High-energy protons, including medical therapy proton facilities
 - -Medium- and low-energy protons
- Require various procurement mechanisms and agreements
- For heavy ion SEE test facilities in particular, persistent concerns about available capacity and capabilities required to meet growing demands from academia, government, and industry
 - -Cross-agency collaborations are examining the trade space and investment options
 - -More information in tomorrow's briefings

Understanding and Improving Supply Based on Needs

Testing at the Speed of Light (nap.edu)

MDA and NASA Hosted <u>2021 Domestic High-Energy Single-Event Effects (SEE)</u> <u>Testing Users Meeting (nasa.gov)</u>

Strategic Radiation-Hardened (SRH) Electronics Council (SRHEC) Public Summary from Analysis of Alternatives (AoA) for Domestic Single-Event Effects (SEE) Test Facilities

John Franco, DTRA Jim Ross, NSWC Crane

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited

SAE CE-12 Surveys

Recent NASA Radiation Test Facility Activities

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering

Interagency Partnerships and Whole-of-Government Efforts

Microelectronics Workforce Development Highlights and Future Thoughts

General Interagency Collaboration Categories

Radiation Effects and Radiation-Hardened Microelectronics

National Aeronautics and Space Administration / EEEE Parts & Radiation Engineering To be published on https://nepp.nasa.gov/

Recent Legislation Emphasizing Microelectronics

•H.R.6395 (Public Law 116-283): William M. (Mac) Thornberry National Defense Authorization Act for Fiscal Year 2021

- -TITLE XCIX—Creating Helpful Incentives to Produce Semiconductors (CHIPS) for America (Sections 9901 9908)
- -https://www.congress.gov/bill/116th-congress/house-bill/6395

•S.1260: United States Innovation and Competition Act of 2021 [was "Endless Frontier Act"]

-Also includes TITLE VI—SPACE MATTERS / Subtitle B / "National Aeronautics and Space Administration Authorization Act of 2021"

-https://www.congress.gov/bill/117th-congress/senate-bill/1260

Recent and Ongoing Workforce Development Support Together with the NEPP Program in many instances

- •SCALE (Scalable Asymmetric Lifecycle Engagement) via SRHEC
 - -"Nationally-coordinated, regionally-executed"
 - -https://www.purdue.edu/discoverypark/scale/index.php
 - -A. Smith, 2020 NEPP ETW presentation
- NSIN H4D (National Security Innovation Network Hacking for Defense) —https://www.nsin.us/, https://www.h4d.us/
- Single-Event Effects (SEE) Testing Bootcamp at the Texas A&M University (TAMU) Cyclotron Institute
- •NEPP ETW training / tutorials and support for training in other community venues
- •Examining opportunities for enhanced parts assurance / engineering training
- Considering other low-key training / knowledge-transfer activities that can benefit NASA workforce and partners

Summary & Forward Work

Continuing NASA EEEE parts management evolution

- -Refining capability structure, cross-Center workflows, and knowledge / tool sharing
- -Building / maintaining relationships with both internal and external stakeholders to advance technology characterization, qualification, and deployment of EEEE parts and components
- •Supporting high operational tempo for external radiation test facility activities, including NASA's own acquisition activities combined with significant interagency focus
- Implementing robust strategies for microelectronics workforce development to meet current and future mission needs

Thank you for your attention – questions welcome!

18

Acronyms

Abbreviation	Definition	Abbreviation	Definition
AFRC	Armstrong Flight Research Center	MS	Master of Science
AoA	Analysis of Alternatives	MSFC	Marshall Space Flight Center
ARC	Ames Research Center	MSU	Michigan State University
BNL	Brookhaven National Laboratory	NASA	National Aeronautics and Space Administration
CNL	Crocker Nuclear Laboratory	NEPP	NASA Electronic Parts & Packaging (Program)
EDT	Eastern Daylight Time	NESC	NASA Engineering & Safety Center
EEEE	Electrical, Electronic, Electromechanical, Electro-Optical	NSIN	National Security Innovation Network
ETW	Electronic Technologies Workshop	NSRL	NASA Space Radiation Laboratory
FRIB	Facility for Rare Isotope Beams	OCE	Office of the Chief Engineer
FY	Fiscal Year	OSMA	Office of Safety and Mission Assurance
GRC	Glenn Research Center	SAE	SAE International, previously known as the Society of Automotive Engineers
GSFC	Goddard Space Flight Center	SCALE	Scalable Asymmetric Lifecycle Engagement
H4D	Hacking for Defense	SEE	Single-event effects
IT	Information Technology	SRH	Strategic Radiation-Hardened
JPL	Jet Propulsion Laboratory	SRHEC	Strategic Radiation-Hardened Electronics Council
JSC	Johnson Space Center	TAMU	Texas A&M University
KSC	Kennedy Space Center	TRL	Technology Readiness Level
LaRC	Langley Research Center	U.S.	United States (of America)
LBNL	Lawrence Berkeley National Laboratory	UC (Davis)	University of California