Wide Bandgap Power Device
Radiation Reliability

Jean-Marie Lauenstein
NASA GSFC, Greenbelt, MD, USA
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DEG</td>
<td>Two-Dimensional Electron Gas</td>
</tr>
<tr>
<td>AlGaN</td>
<td>Aluminum Gallium Nitride</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>BV_{DSS}</td>
<td>Drain-Source Breakdown Voltage</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>DDD</td>
<td>Displacement Damage Dose</td>
</tr>
<tr>
<td>E_{C}</td>
<td>Conduction Band Energy</td>
</tr>
<tr>
<td>E_{F}</td>
<td>Fermi Level Energy</td>
</tr>
<tr>
<td>E_{gap}</td>
<td>Bandgap Energy</td>
</tr>
<tr>
<td>E_{V}</td>
<td>Valance Band Energy</td>
</tr>
<tr>
<td>EDMR</td>
<td>Electrically Detected Magnetic Resonance</td>
</tr>
<tr>
<td>FIT</td>
<td>Failures In Time</td>
</tr>
<tr>
<td>FOM</td>
<td>Figure of Merit</td>
</tr>
<tr>
<td>GaAs</td>
<td>Gallium Arsenide</td>
</tr>
<tr>
<td>GaN</td>
<td>Gallium Nitride</td>
</tr>
<tr>
<td>GCR</td>
<td>Galactic Cosmic Ray</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary Earth Orbit</td>
</tr>
<tr>
<td>HEMT</td>
<td>High Electron Mobility Transistor</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Drain-Source Leakage Current</td>
</tr>
<tr>
<td>I_G</td>
<td>Gate Current</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate-Source Leakage Current</td>
</tr>
<tr>
<td>I_{R}</td>
<td>Reverse Current</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>JBS</td>
<td>Junction Barrier Schottky diode</td>
</tr>
<tr>
<td>JFET</td>
<td>Junction Field Effect Transistor</td>
</tr>
<tr>
<td>LEO</td>
<td>Low Earth Orbit</td>
</tr>
<tr>
<td>LET</td>
<td>Linear Energy Transfer</td>
</tr>
<tr>
<td>MISFET</td>
<td>Metal-Insulator Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>NIEL</td>
<td>Non-Ionizing Energy Loss</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>PIGS</td>
<td>Post-Irradiation Gate Stress</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>R_{DS.ON}</td>
<td>On-State Drain-Source Resistance</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RHA</td>
<td>Radiation Hardness Assurance</td>
</tr>
<tr>
<td>SBD</td>
<td>Schottky Barrier Diode</td>
</tr>
<tr>
<td>SEB/GR</td>
<td>Single-Event Burnout/Gate Rupture</td>
</tr>
<tr>
<td>SEDR</td>
<td>Single-Event Dielectric Rupture</td>
</tr>
<tr>
<td>SEE</td>
<td>Single-Event Effect</td>
</tr>
<tr>
<td>SELC</td>
<td>Single-Event Leakage Current</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SOA</td>
<td>State Of the Art; Safe Operating Area</td>
</tr>
<tr>
<td>SWaP</td>
<td>Size, Weight, and Power</td>
</tr>
<tr>
<td>TCAD</td>
<td>Technology Computer-Aided Design</td>
</tr>
<tr>
<td>TID</td>
<td>Total Ionizing Dose</td>
</tr>
<tr>
<td>VDMOS</td>
<td>Vertical Double-diffused MOSFET</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>Drain-Source Voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage</td>
</tr>
<tr>
<td>V_{R}</td>
<td>Reverse-bias Voltage</td>
</tr>
<tr>
<td>V_{TH}</td>
<td>Gate Threshold Voltage</td>
</tr>
<tr>
<td>WBG</td>
<td>Wide Bandgap</td>
</tr>
<tr>
<td>Xe</td>
<td>Xenon</td>
</tr>
</tbody>
</table>
Outline

• Overview
 – SiC and GaN material properties
 – Inherent radiation hardness from wide bandgaps (WBGs)

• SiC Power Device Heavy-Ion Effects & Mechanisms
 – SiC Diodes and MOSFETs

• GaN Power Device Heavy-Ion Effects & Mechanisms
 – GaN High Electron Mobility Transistors (HEMTs)
 • Focus on normally-off p-GaN HEMTs

• Radiation Hardness Assurance Challenges
 – Test methodology
 – Rate prediction and reliability uncertainty

Image: A. Woodworth, NASA

Single-event burnout in a SiC Schottky Diode
SiC out-performs Si on 5 different parameters, lending itself to high-power, high-temperature, and fast-switching applications.
To date, GaN’s upper limit on voltage rating is dictated primarily by device reliability issues.
Wide bandgap (WBG) Inherent Radiation Tolerance

• “Inherent” radiation hardness of WBG semiconductors typically refers to their tolerance of total dose:
 – Both the ionization energy and threshold energy for defect formation (atomic bond strength) exceed that for Si
 – Early WBG devices did not have gate oxides
 – Operation of WBG devices at high temperature may help alleviate dose effects
Heavy-ion induced catastrophic single-event burnout in SiC and GaN power devices: Higher energy for charge ionization doesn’t provide SEE immunity
Displacement Damage Dose (DDD) Effects: GaN HEMTs

- Parametric degradation in GaN HEMTs occurs at DDD levels above those for typical space applications
 - Weaver, et al., 2015 show order-of-magnitude better performance of GaN vs. GaAs HEMTs
- GaN HEMT DDD effects include
 - Decreased drain current
 - Threshold voltage shift (typically positive)
 - Decreased mobility and transconductance
- DDD susceptibility is greater when:
 - parts are biased during irradiation
 - parts have had prior hot-carrier stress
 - see Chen, et al., IEEE TNS 2015

GaN device DDD test conditions are important

Total Ionizing Dose (TID) Effects: SiC MOSFETs

Despite thick oxides, SiC MOSFETs can be TID-robust:

- **Cree Gens 1 & 2 in spec up to 100 krad(Si)**
 - Above 300 krad(Si), significant gate-drain capacitance changes can strongly impact switching performance

- **Expect variability between manufacturers and processes**
 - Hole trapping depends strongly on NO anneal time and temperature
 - Interface state formation with radiation can vary
 - Substantial fundamental differences between radiation responses of Si and SiC MOSFETs found via electrically detected magnetic resonance (EDMR)

TID hardness is coincidental and may change
Total Ionizing Dose: GaN HEMTs

Many gate designs:

- Schottky gate (normally on)
 - Aktas, 2004 demonstrated 0.1 V threshold shift after 6 Mrad(Si) γ irradiation
 - Harris, 2011 demonstrated no significant shift after 15 Mrad(Si) proton irradiation

- p-GaN gate (normally off)
 - 500 krad(Si) γ irradiation: < 18% Vth shift (Lidow, 2011)

- Cascode design (normally off)
 - Limited data (see Qi, 2020, Nanotech & Prec Eng)
 - Gate controlled by low-V n-type commercial Si MOSFET

- MISHEMT (normally off)
 - Oxide/insulator under recessed gate

GaN HEMT TID effects may vary as a function of gate design
SILICON CARBIDE POWER DEVICE
SINGLE-EVENT EFFECTS
SiC Single-Event Effects: Diodes

• SEE in SiC Schottky diodes include:
 – Transient charge collection
 – Permanent increased leakage current
 – Catastrophic single-event burnout (SEB)

After Kuboyama, IEEE TNS, 2006

NASA GRC: A. Woodworth, 2015
SiC Schottky Diode SEE Thresholds

- Onsets for ion-induced leakage current and single-event burnout saturate quickly with linear energy transfer (LET)
 - Saturation occurs before the high-flux iron knee of the GCR spectrum

Risk-avoidant mission LET requirements for SEB vary by application:
All fall within the saturation region of SEE sensitivity
SiC Diode Single-Event Burnout

SEB is strongly electric field dependent: 650 V – 3300 V diodes fail at similar fraction of rated V_R

Lauenstein, IEEE IRPS, 2021
Electric field is not a primary factor for SELC: Onset V_R for degradation is similar for 650 V – 1700 V Schottky diodes
PiN diodes have a higher threshold voltage for SELC, suggesting a role of the Schottky metal contact in initial degradation effects.
Individual ion strikes create areas of thermal damage that differ from displacement damage

Kuboyama, et al., 2006 findings:

- SELC requires electric field
 - Displacement damage does not
- Non-ionizing energy loss (NIEL) factor
 - predicts much lower amount of leakage current per ion strike
- Result of Joule heating
 - Damage site diameter ≈ ion track width

50 nm x 70 nm damage sites in SiC SBD:
3 MeV/u Xe while at 26% of rated V_R

Kuboyama, IEEE TNS, 2006
SiC SELC Mechanisms

• 600 V – 1700 V SBD & JBS diodes require the same critical power density for onset of damage

Degradation has minimal dependence on rated breakdown voltage

Power $\propto V_R^2 \times $ LET

Johnson, IEEE TNS 2019
Weak Electric Field Dependence Explained

- \vec{E}-field maxima at the epi/sub. interface & near the Schottky contact due to ion strike
- Much of the epilayer thickness is not dissipating significant power
- Thus similar total power dissipation regardless of epi thickness & rated voltage

Implication: Minimal SELC benefit from derating higher-voltage parts vs. using a part with lower breakdown rating!

Images modified from Johnson, IEEE TNS 2019
SEB: Source of High Power Density in Schottky Diodes

• Key components for SEB in SiC Schottky diodes identified via TCAD:
 – Duration of high E-field at Schottky contact
 – Impact ionization then regenerative Schottky contact electron injection for thermal runaway at the contact interface
 • See Kuboyama, IEEE TNS, 2019

![Diagram showing electric field profiles](attachment:electric_field_profiles.png)
SiC Power MOSFET Single-Event Effects

- **SEE**s in SiC MOSFETs include gate effects
 - Latent gate damage
 - Permanent increased leakage current
 - Drain-Gate or Drain-Source leakage pathway
 - see Martinella, IEEE TNS 2020
- **Catastrophic single-event burnout (SEB)**
- **SiC JFETs** have similar behavior except:
 - Rare to have drain-source leakage
 - Drain-gate leakage is main degradation pathway
 - No latent gate damage (no gate oxide)

After Martinella, IEEE TNS, 2020
SiC Power MOSFET Single-Event Effects

- Typical 1200 V MOSFET SEE thresholds:
 - SEB and drain-source SELC saturate at low LET, similar to diode effects
 - Latent gate damage occurs at very low V_{DS}
 - At lowest LETs, SEB dominates

see also Martinella, Microelectron Reliab, 2021
SiC Power MOSFET Latent Gate Damage

- **Latent gate damage** (green):
 - Reduced with lower LET/lighter ions
 - At high LETs, onset at ~50 V to 75 V!

- **Mechanism**: (Busatto, 2020 Microelectron Reliab)
 - Ion strike causes high \overline{E}_{ox}
 - high hole trapping in oxide
 - shift of SiC electric field across oxide
 - High \overline{E}_{ox} results in fast current injection
 - Poole-Frenkel like rapid emission of holes from oxide traps
 - Fowler-Nordheim tunneling of holes across SiC/SiO$_2$ interface energy barrier
SiC Power MOSFET SELC

- **Drain-Gate SELC** (yellow region):
 - Leakage thru oxide over drain “neck” region (Martinella, 2020 IEEE TNS)
 - Not all MOSFETs have drain-gate SELC
 - Design techniques may eliminate this effect
SiC Power MOSFET SELC

- **Drain-Source SELC (blue region):**
 - Sensitive region is p-n junction (body-drain) (Martinella, 2020 IEEE TNS)
 - Least influenced by LET or electric field
 - Onset ~400 V for SiC MOSFETs rated 900 V to 3300 V
 - Similar to SELC in diodes
SiC Power MOSFET SEB

- **SEB (red region)**
 - Max cross section at ~50% of rated V_{DS}
 - Susceptible at very low LET
 - Proton/neutron risk

see also Martinella, Microelect Reliab, 2021

MOSFET image: Li, Micromachines, 2019. CC BY 4 license
Evidence of BJT Turn-On

- Pulsed laser tests of matched MOSFET & diode show MOSFET charge amplification
 - Johnson, IEEE TNS, 2019
- TCAD simulations show run-away current
 - Witulski, IEEE TNS, 2018

Data Do Not Support BJT Involvement

- SEB voltage in MOSFET = Diode
- SEB protective mode testing fails
 - Ball, IEEE TNS, 2020
- Removal of MOSFET n+ source implant yielded similar simulated max lattice temperature
 - Shoji, Microelectronics Reliability, 2015
SiC MOSFET SEB: Minimal Parasitic BJT Involvement

Evidence of BJT Turn-On

- **Pulsed laser tests of matched MOSFET & diode show MOSFET charge amplification**
 - Johnson, IEEE TNS, 2019
- **TCAD simulations show run-away current**
 - Witulski, IEEE TNS, 2018

TCAD Explanations

- **MOSFET & diode similar only in first ~100 ps**
 - Johnson, IEEE TNS, 2019
- **SEB protection circuitry too slow**
 - Ball, IEEE TNS, 2020
- **Note TCAD sims of increased substrate resistance showed decreased max temperature**
 - Abbate, IEEE TNS, 2015

To be presented by J.-M. Lauenstein at the 2021 NEPP Electronics Technology Workshop, Greenbelt, MD, June 14-17, 2021
SiC Properties Revisited: Thermal Conductivity

• High thermal conductivity, but not instantaneous
 – Heat removal via acoustic phonons
 – ≥ ns to start conducting heat away
 • See Akturk, IEEE TNS, 2018

~ 1 to 5 ps

e-/hole pairs

~ 1 ns

optical phonons

~ 1 ns/ 10 μm

acoustic phonons

Device terminal or ambient SiC

Image: Creative Commons, M. Griffith, 2017
SiC Properties Revisited: Electric Field

- Peak $\overline{E}_{\text{SiC}} > 10x$ peak \overline{E}_{Si} means 100x higher heat generation density
 - More rapid rise in temperature (T)
 - $\Delta T = \text{time} \times \text{power} / \text{heat capacity (C)}$
 - $C \propto$ heated volume
 - SiC sublimation in picoseconds
 - See Shoji, JJAP 2014 & Akturk, IEEE TNS 2018

Joule’s law

$\text{Power} = \frac{V^2}{R}$

SiC epi thickness

$1/10^{\text{th}}$ Si

SEB

Silicon Carbide vs. Unhardened Silicon:
Power MOSFET SEB Susceptibility

SiC MOSFETs are generally less susceptible to SEB than unhardened, commercial silicon MOSFETs **

** Not shown: SiC MOSFETs are more susceptible to permanent, non-catastrophic damage effects.

To be presented by J.-M. Lauenstein at the 2021 NEPP Electronics Technology Workshop, Greenbelt, MD, June 14-17, 2021
Silicon Carbide vs. Silicon: Schottky Diode SEB Susceptibility

- SiC Schottky diode susceptibility to SEB occurs at < 50% of avalanche V_R
- Si Schottky diodes pass at this derating level, with almost half passing at 100%

To date, no tested commercial SiC diodes pass above ~50% of rated V_R at mission LET requirement levels

Plots: Casey, IEEE NSREC, 2015

Data from: Lauenstein, MRQW, 2018
GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) RADIATION EFFECTS
GaN HEMT Single-Event Effects

• Power GaN HEMT structure
 – Lateral device
 – Insulators under field plates
 – Possible gate oxide/insulator
 – No p-n junction - cannot avalanche
 – Breakdown voltage >> rated voltage

• SEEi\'s include:
 – Leakage current degradation
 – Single-event burnout
 – Single-event dielectric rupture (SEDR)

To be presented by J.-M. Lauenstein at the 2021 NEPP Electronics Technology Workshop, Greenbelt, MD, June 14-17, 2021
GaN HEMT SEE Failure Thresholds

- **SEE data vary:**
 - Multiple HEMT designs
 - Lot-lot variability
 - Generational variability

- **Guaranteed SEE-free HEMTs exist**
 - Max 300 V

- **Susceptibility tends to increase with voltage rating, with exceptions**
 - Expect 40 V parts to pass at 40 V
 - 100 V & 200 V parts:
 - some only degradation;
 - others SEB susceptibility
 - Expect SEB in ~ 600 V p-gate parts
 ~50% of rating at LET ~ 40 MeV-cm²/mg(Si)

Images: NASA JPL, courtesy of L. Scheick
Field plate design will likely affect SEDR susceptibility

GaN HEMT Dielectric Rupture

- **SEDR: Source-Drain Shorting**
 - Worst-case angle parallel to channel
 - Also occurs at normal incidence
 - Simulations suggest ion strike at edge of field plate necessary at normal incidence
 - see Zerarka, IEEE TNS 2017
 - Low cross section for failure
 - Supports simulation findings
GaN HEMT Single-Event Burnout

- **SEB: Drain-substrate**
 - Requires ion range into substrate
 - see Zerarka, IEEE TNS 2017
 - Higher threshold V than for SEDR (for same part type) but higher cross section too

GaN HEMTs can have multiple catastrophic SEE failure modes

Image: Mizuta, et al., IEEE TNS 2018
GaN HEMT Single-Event Leakage Current

- **Drain-substrate non-catastrophic leakage current degradation**
 - Large drain SETs correlated with leakage current increase
 - see Abbate, Microelectro Reliab, 2015
 - **Drain-Gate leakage current degradation reported in normally-on GaN HEMTs**
 - see ex/ Kuboyama, IEEE TNS 2011

Image: Mizuta, et al., IEEE TNS 2018
RADIATION HARDNESS ASSURANCE CHALLENGES
Heavy-Ion Test Methodology for Silicon Power MOSFETs

• Worst-case ion beam conditions for VDMOS (and the JESD57 standard)
 – Normal incidence
 – Ion Bragg peak at epi/substrate interface

• Rationale
 – Allows more accurate comparison of SEE tolerance between device offerings
 – Eliminates bond-wire shadowing effects
 – Safe-operating area accurate for all lighter ions

• Test Goals
 – Define safe operating area, and/or
 • Increment V_{DS} between beam runs, until failure
 – Obtain SEB cross-section curves

Silicon power MOSFET test methods are based on decades of test data and research into the mechanisms of failure in VDMOS

Li, Micromachines, 2019. CC BY 4 license
Silicon Carbide SEB Test Challenges

- Ion-induced leakage current (I_R) can impact SEB susceptibility if SEB does not occur early in the beam exposure
- Achievement of test method fluence levels may not be possible, and may provide misleading data

Difficult to obtain accurate SEB safe operating area
RHA Guidance: SiC Testing Recommendations

• Ion beam selection:
 – Thinner epilayer means lower-energy ions can penetrate into the substrate
 – In addition to mission requirement conditions, consider lighter ion/lower LET tests to:
 • Aid on-orbit risk assessments
 • Reveal differences between parts

• Test fluence:
 – Dictated by test goals and degradation response of the device
 – Non-catastrophic damage can *increase* the threshold voltage of SEB
 • Identification of the threshold voltage yielding the maximum cross section will be identified instead
 – Rate of degradation of leakage current is not dependent on prior history
 • Until the rate is no longer constant

• Temperature:
 – Unestablished effects on SEB
 • Impact ionization is hole-driven unlike in silicon
 – Some data suggest non-catastrophic degradation rate increases with temperature
RHA Guidance: GaN HEMT Test Recommendations

• Ion beam selection
 – Safe operating areas (SOAs) can be identified
 • Valid for the tested lot only
 • Part-part variability reduces confidence – larger sample sizes advised
 • Effects are LET-dependent; range should penetrate into the substrate

• Sample and test setup considerations
 – Lot-specific heavy-ion testing is necessary until consistency becomes routine
 • Each wafer is often one “lot”
 – Packaging is designed for minimal inductance and maximum heat extraction
 • Consider impact of decapsulation, wire-bonding, and restricted die access
 – Susceptibility may depend on test circuit design and methods
 • Voltage stress introduces defects: do not exceed rated voltage on the drain during post-rad characterizations
 • Gate structures have limited voltage ratings – minimize systematic transients

• Temperature Effects are not established

To be presented by J.-M. Lauenstein at the 2021 NEPP Electronics Technology Workshop, Greenbelt, MD, June 14-17, 2021
RHA Guidance: Risk Assessment

- (Unvalidated) failure rate prediction methods developed for Si and SiC power devices may provide an upper bound
 - Allow additional margin for uncertainty of SiC SEB voltage threshold
 - Consider that steradian window of vulnerability may change with voltage
 - see Javanainen, IEEE TNS, 2017
 - For risk-tolerant applications, margin and unpowered redundancy is advised
- Non-catastrophic damage has unknown longer-term effects
 - Extent of damage is part-to-part variable
 - Consider application temperature and functional lifetime requirements
 - For risk-tolerant applications, margin and unpowered redundancy is advised
 - Life tests of damaged parts may reveal higher-likelihood failure modes - sample size will limit discovery of rarer modes