

1

Proton Recoils in GaN & Upcoming RF GaN Work

Jason Osheroff

jason.m.osheroff@nasa.gov NASA Goddard Space Flight Center

To be presented by Jason Osheroff at the 2021 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 14-17, 2021.

Acronyms/Abbreviations

- AMP: Amplifier
- CIF: Center Innovation Fund
- COTS: Commercial Off The Shelf
- DC: Direct Current
- DDD: Displacement damage dose
- DUT: Device Under Test
- EMPC: Experimental and Mathematical Physics Consultants
- GSFC: Goddard Space Flight Center
- HEMT: High Electron Mobility Transistor
- LBNL: Lawrence Berkeley National Lab
- LLRF: Low Level Radio Frequency
- LET: Linear Energy Transfer
- MCNP: Monte Carlo N Particle
- NEPP: NASA Electronics and Packaging Program
- REAG: Radiation Effects and Analysis Group
- RF: Radio Frequency
- SEE: Single Event Effects
- SRIM: Stopping Ranges of lons in Matter
- TID: Total lonizing Dose

Outline

- Proton Recoils in GaN*
 - SRIM
 - MCNP
 - Results
 - Conclusion
 - Future work and implications

*All figures from J. Osheroff et al., "LET and Range Characteristics of Proton Recoil Ions in Gallium Nitride (GaN)," doi:10.1109/TNS.2021.3050980

- RF GaN HEMTs
 - Motivation
 - DUT selection
 - Test bench
 - Challenges & Next steps

Proton Recoils in GaN - SRIM

LET as a function of ion energy in GaN

Range as a function of ion LET in GaN

 Stopping Ranges of Ions in Matter (SRIM) calculates the LET and range as a function of energy for a given ion species in a given material
Hydrogen through Germanium* are all possible recoils

Proton Recoils in GaN - MCNP

MCNP simulations

- 1x10⁹ incident protons at multiple energies 50-1000 MeV
- Both GaN (see Fig. 3 below) and Si targets for comparison
- Determine the actual populations of secondary recoil ions in GaN from proton irradiation
- Determine the species and energy of each recoil

(left) Scenario for MCNPX simulations, including proton source and AlGaN/GaN target. (right) simple cross section of a typical GaN HEMT.

Proton Recoils in GaN - Results

- Higher Z ions present in GaN
 - Notable peaks around Si (N=14) for Si target
 - Notable peaks around N (N=7) and Ga (N=31) for GaN target

Recoil lon population in Si for 50, 200, and 1000 MeV proton beams

Recoil lon population in GaN for 50, 200, and 1000 MeV proton beams

Proton Recoils in GaN - Results

 In GaN, upper-end recoil LET increases with proton energy and exceeds that seen in Si, reaching up to ~27 MeV-cm²/mg

LET of recoil ions in Si for various incident proton energies

LET of recoil ions in Si for various incident proton energies

To be presented by Jason Osheroff at the 2021 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 14-17, 2021.

To be presented by Jason Osheroff at the 2021 NEPP Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD, June 14-17, 2021.

Proton Recoils in GaN - Conclusions

- Looking at individual recoil ions from the MCNP output we find that high LET recoils are dominated by elastic recoils
- Similar approximations can be made for GaAs, SiGe, diamond etc. based on target mass
- Theoretical upper limit for Ga in GaN and Si in Si elastic "head-on" recoils

Proton Recoils in GaN – Future Work and Implications

- Similar approximations can be made for GaAs, SiGe, diamond etc.
- High energy, high flux proton environments may pose an increased risk of SEE in GaN as opposed to Si
- In materials such as GaN that have high TID and DDD tolerance it may be possible to do proton SEE irradiations with a high enough fluence to achieve recoils with an LET of ~27 MeV-cm²/mg
- Future work would include proton testing of known GaN devices with accompanying simulation (LET_{TH} = 15-20 MeV-cm²/mg with >500 MeV protons)

RF GaN

RF GaN HEMT SEE testing – Motivation

- Worst-case radiation test conditions
 - RF mode vs. DC only
- Laser vs. heavy ion testing
- Device factors resulting in SEB susceptibility
 - Output power
 - Frequency range
 - Drain voltage

RF GaN HEMT SEE testing – DUT Selection

Table of Proposed Test Devices				
Manufacturer	Part #	Frequency Range (GHz)	V _{DS} (Volts)	Power (Watts)
CREE/Wolfspeed	CGHV59350F	5.2-5.9	50	450
CREE/Wolfspeed	CGHV59070F	4.4-5.9	50	76
CREE/Wolfspeed	CGH31240F*	2.7-3.1	28	240
CREE/Wolfspeed	CGHV40200PP	1.7-1.9 (up to 3)	50	218
Qorvo	QPA2237*	0.3-2.5	32	10

Table of proposed GaN HEMTs for SEE testing

DUTs selected to form matrix of voltage, frequency, and power properties

RF GaN HEMT SEE testing – Test Bench

- 2Gs/s Oscilloscope
- Network Analyzer
- Spectrum Analyzer
- LLRF Generator
- 2x Keithley 2400 series
 - DUT Gate
 - PRE-AMP control
- 2x BK Precision
 - High I for PRE-AMP Drain
 - High V for DUT Drain
- PRE-AMP
 - RF GaN HEMT technology!
- Various RF circuitry to deliver and dissipate power safely
- Data Acquisition system

RF test equipment at GSFC REAG Lab

RF GaN HEMT SEE testing – Challenges and Next Steps

Cooling

- Vibrational considerations for laser testing
 - Decoupled fan
- Vacuum compatible cooling at LBNL
 - Liquid cooling
 - Power compatibility
- DUT acquisition for round 2 laser and heavy ion testing

Acknowledgments

- NASA Electronics Parts and Packaging Program
- Recoils in GaN
 - Thomas M. Jordan of Experimental and Mathematical Physics Consultants (EMPC) for modifying the MCNP code.
- RF GaN HEMT
 - GSFC Code 561 and CIF for support of RF equipment
 - John Scarpulla from The Aerospace Corporation