

A Monte Carlo-Based Analysis of Radiation Effects Mechanisms in 3D NAND Memories

<u>Matthew L. Breeding</u>¹, Edward P. Wilcox², Robert A. Reed¹, Ronald D. Schrimpf¹, Kevin M. Warren¹, Brian D. Sierawski¹, and Michael L. Alles¹ ¹Vanderbilt University ²NASA Goddard Space Flight Center

June 16, 2021

This work is sponsored by DTRA, grant HDTRA1-18-1-0002

V

Outline

- 3D NAND memories
 - Charge-trap (CT) vs. floating-gate (FG)
- Development of MRED simulations for 3D NAND
 - Simulation vs. experimental results
- Comparison of dose-enhancement effect in FG & CT devices
- Conclusion

3D NAND memory

- 72-layer SK Hynix charge-trap 3D NAND
- p-BiCS structure ("U" shaped string)
- Operational modes trade reliability for density

Source Line

Bit Line

SG

3D NAND – two types

- Charge trap (CT)
 - Gate-last fabrication
 - Uses silicon nitride layer as CT
 - Metal (usually W) word lines
- Floating gate (FG)
 - Gate-first fabrication
 - Polysilicon FG with IPD
 - Polysilicon word lines

Simulation details for 3D NAND

- 72-layer CT 3D NAND (Hynix)
- Incident protons from 500 keV to 1.2 MeV
- Assumptions
 - Block sensitive detectors
 - Monolithic BEOL
 - No voids in stack
 - Simplified materials
 - Not p-BiCS (WL placement)

Wilcox, Breeding, et al. *IEEE TNS*, 68(5), 2021

Summary of previous results

Wilcox, Breeding, et al. IEEE TNS, 68(5), 2021

- Proton-induced SEU observed in 72-layer SK Hynix 3D NAND (CT)
- Heavy-ion irradiations for top die

Updated simulation structure – fixing assumptions

• Proton-induced SEU observed in 72-layer SK Hynix 3D NAND

• Heavy-ion SEU observed in 72-layer SK Hynix 3D NAND

TID in 3D NAND – dose enhancement

TID in 3D NAND – FG

- Floating gate \rightarrow polysilicon WL
- Only expect DEF from BEOL metallization
- DEF falls off rapidly
 - ~20 layers \rightarrow ~1 μm
- X-rays incident from backside have less effect in NAND stack

TID in 3D NAND – CT

- Charge trap \rightarrow tungsten WL
- Expect DEF from BEOL and WLs
- DEF falls off much less rapidly
- X-rays incident from backside have similar effect

TID in 3D NAND – DEF

- Clear dose-enhancement effect
- Function of photon energy
- Poor statistics for gammas

V

Conclusion

- 3D NAND offers excellent storage capabilities
- Physics-based modelling with MRED is ideal for understanding radiation effects mechanisms in complex devices
- Better to account for full physical features in MRED
- The dose-enhancement effect for CT 3D NAND is significantly greater than in FG 3D NAND due to tungsten WLs
 - Depends on test environment
 - Dose-enhancement effects from BEOL in both cases