

Evaluating SEE Rate Prediction Methods for Complex Devices

Brian Sierawski, Rachel Brewer, Kevin Warren, Robert Reed Vanderbilt University

NEPP Electronics Technology Workshop, 2021 This work supported by NASA NEPP Grant #80NSSC20K0424

- Evaluate single event reliability of complex devices
 - Complex device collection of circuits that consists of more than one basic repeated structure or demonstrates dynamic behavior
- Single event analysis increasingly needed
 - Test considerations covered in JPL Pubs 08-13, 18-2
 - How do we make use of the data? New tools? Guidelines?
- Complex systems invoke unique *challenges* for rate predictions
 - How many sensitive volumes?
 - What technology?
 - How much derating/masking?
 - Error latency? Observability?
 - Fluence dependencies?

- Vanderbilt Engineering
- Single event effects reported in FPGA, DDR-II, PWM, rad-hard microprocessor, angular position sensor, video codec, analog switch, resolver-to-digital converter, technology comparison of flip-flop chains
- Experiments produce macroscopic cross section curves (cm²/device) for output errors, functional interrupts
- Authors have taken different approaches to predicting component level ion-induced errors (e.g. SEFI)
 - CREME96 on saturated or normalized cross sections
 - Effective flux approach
 - Undocumented

Vanderbilt Engineering

- RPP model for device SEE cross sections implies a large-area, contiguous sensitive volume
 - Depth usually assumed to be known
 - Assumes macroscopic sensitive volume represents aggregate contribution of individual sensitive volumes
 - Modifies limit of integration and path-length distribution

Effective Flux Approach

- Binder's effective flux approach implemented
 - Replaces complicated chord distributions
 - Eliminates need for sensitive volume dimensions
 - Calculates normal-incident flux of ions Φ_{eff} with effective LET above LET threshold, L_c
- Ion-induced SEE rate, λ , depends on L_c and cross section σ
 - Can be integrated over cross LET curve
- Intriguing for complex devices

$$\phi_{eff}(L_c) = \frac{1}{2} \int_{L_{min}}^{L_c} \phi(L)(L/L_c)^2 dL + \frac{1}{2} \int_{L_c}^{L_{max}} \phi(L) dL \qquad \cos \theta_c = L/L_c$$

$$\lambda_{ion} = \phi_{eff}(Lc) \cdot \sigma$$

D. Binder, "Analytic SEU Rate Calculation Compared to Space Data," IEEE Trans. Nucl. Sci., vol. 35, no. 6, pg. 1570, Dec. 1988.

Vanderbilt Engineering

- Complex ICs typically have an unknown number of sensitive volumes and/or unknown resource utilization
 - Is rate conservative and by how much?
- Calculated rates for 10,000 1 × 1 × 1 µm sensitive volumes
- RPP approach can be strongly affected by assumed bits, depth
 - Least amount of information yields largest rates
- Effective flux approach unaffected by assumed bits
 - Proportional to cross section
 - Consistent with single volume, depth $\rightarrow 0$

Order

1

2

Challenge: Stacked Devices

- Memories, die stacks, integrated processes
 - Are cross sections similar for stacked devices?
- 3 horizontal and 3 vertical volumes irradiated with 100k 10 MeV alphas in CRÈME-MC

Horizontal

Count

5.52

 4.99×10^{3}

3x fewer events (vert.), events have order of 3

poth rate predictions unchanged

σ **(cm²)**

Count

8.49

6.37

3	-	-	1.67 × 10 ³	3.94 × 10°
Even	t σ differ	, but total	l upset σ rem	nains \rightarrow
hath	roto pro	diationa u	nahangad	

1.18 × 10⁻⁷

1.3 × 10⁻¹⁰

Vertical

σ (cm²)

2 × 10⁻¹⁰

 1.5×10^{-10}

- Complex systems may include fluence-dependent errors
 - EDAC (parity) common in cache, processors, …
 - Observable *error* occurs as a result of two or more *upsets*
- Cannot estimate rates from EDAC cross sections
 - Error cross section changes over time/fluence (i.e. nonconstant rate)
- Reliability predictions depend on assumed form

Simulated Random Upset Times										
1.65	1.24	0.51	0.07	0.40	0.26	0.33	1.47			

Challenge: Fluence Dependencies

- Open-source simulator for Intel 8085 microprocessors
 - Executes assembly code using behavioral model
 - Injects random single event upsets and monitors for faults

gnusim8085

Evaluated recursive

factorial algorithm

 Selected algorithm demonstrates no fluence dependence

Vanderbilt Engineering

- Significant uncertainties can exist in SEE rate predictions for complex devices
- Effective fluence approaches require fewer parameters, but can be highly conservative
 - Some suggestion limits of integration could be defined by process
- RPP approaches can vary over 100 × depending on assumptions
 - Per bit cross sections only appropriate if mechanism directly associated with each bits
- Cross sections and rates aren't the whole picture, dependencies affects reliability
- Methods and assumptions should be documented!

