

#### Lyudmyla (Panashchenko) Ochs

Failure Analysis Engineer

NASA GSFC Code 562 EEE Parts, Photonics and Assembly Branch

June 16, 2021

#### Acronyms

| CSAM | C-Mode Scanning Acoustic Microscopy |
|------|-------------------------------------|
|------|-------------------------------------|

- DPA Destructive Physical Analysis
- EOS Electrical Over Stress
- EEE Parts Electrical, Electronic and Electromechanical Parts
- ESD Electro Static Discharge
- FA Failure Analysis
- GSFC Goddard Space Flight Center
- IGA Internal Gas Analysis
- NASA National Aeronautics and Space Administration
- PIND Particle Impact Noise Detection
- PEM Plastic Encapsulated Microcircuit
- PMA Prohibited Materials Analysis

## Selection of Parts for DPA

- NASA GSFC projects follow EEE-INST-002 for selection and testing of EEE parts
- EEE-INST-002 defines when DPA should be performed based on combination of factors that includes commodity type, quality level of part type selected and project level (risk tolerance)

|                                            |                                |   | Le | evel 1        | Level 2 |   | I             | Level 3 |                |
|--------------------------------------------|--------------------------------|---|----|---------------|---------|---|---------------|---------|----------------|
| Screen                                     | Test Methods and<br>Conditions | К | H  | Non-QML<br>5/ | К       | H | Non-QML<br>6/ | H       | Non-<br>QML 6/ |
| 12. Radiographic 7/                        | MIL-STD-883, Method 2012       |   | Х  | x             |         | х | Х             | Х       | Х              |
| 13. External Visual 1/                     | MIL-STD-883, Method 2009       |   |    | X             |         |   | Х             | х       | х              |
| 14. Destructive Physical Analysis<br>(DPA) | MIL-STD-883, Method 5009       | X | Х  | X             | Х       | x | Х             | Х       | Х              |

#### Table 2 SCREENING REQUIREMENTS FOR HYBRID MICROCIRCUITS (Page 2 of 2)

#### Table 3A CERAMIC CAPACITOR QUALIFICATION REQUIREMENTS 1/ (Page 2 of 3)

|                                                                   | Quan                                                                                                                                                        | tity (Accept Nun                                                                                                                                                                                 | nber)                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Methods, Conditions, and                                     |                                                                                                                                                             | Level                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |
| Requirements                                                      | 1                                                                                                                                                           | 2                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                       |
|                                                                   | 12(0)                                                                                                                                                       | 5(0)                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                     |
| MIL-STD-202, Method 103, Condition A and MIL-PRF-<br>123, Group B | х                                                                                                                                                           | х                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |
| MIL-STD-202, Method 208                                           | 5(0)<br>X                                                                                                                                                   | 3(0)<br>X 5/                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                     |
| EIA-469                                                           | х                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |
|                                                                   | Test Methods, Conditions, and<br>Requirements     MIL-STD-202, Method 103, Condition A and MIL-PRF-<br>123, Group B     MIL-STD-202, Method 208     EIA-469 | Quant   Test Methods, Conditions, and<br>Requirements Quant   1 1   MIL-STD-202, Method 103, Condition A and MIL-PRF-<br>123, Group B 12(0)<br>X   MIL-STD-202, Method 208 5(0)<br>X   EIA-469 X | Quartity (Accept Num       Test Methods, Conditions, and<br>Requirements     Level       1     2       12(0)     5(0)       MIL-STD-202, Method 103, Condition A and MIL-PRF-<br>123, Group B     12(0)     5(0)       MIL-STD-202, Method 208     5(0)     X       EIA-469     X     X |

## About S-311-M-70

• DPA commonly performed per MIL-STD-1580:

Destructive Physical Analysis for Electronic, Electromagnetic, and Electromechanical Parts

- NASA GSFC uses an internal S-311-M-70 document based on MIL-STD-1580 with several amendments:
  - Sample size
  - Prohibited Materials Analysis (PMA)
  - Capacitors
  - Ferrite beads



| ORIGINATOR:<br>Bruce Meinhold, MEI Technol                        | logies Inc.                                      | DATE | FSC: 59GP                               |
|-------------------------------------------------------------------|--------------------------------------------------|------|-----------------------------------------|
| REVIEWED:<br>Alix Duvalsaint, QSS Group Is                        | ıc.                                              |      | Specification for the<br>Performance of |
| CODE 562 APPROVAL:<br>Marcellus Proctor, NASA GSI                 | <sup>2</sup> C                                   |      | Destructive Physical<br>Analyses (DPA)  |
| ADDITIONAL APPROVAL<br>Dr. Henning Leidecker, NASA                | :<br>GSFC                                        |      |                                         |
| ADDITIONAL APPROVAL                                               | :                                                |      | S-311-M-70                              |
| NATIONAL AERONAUTIC<br>GODDARD SPACE FLIGH<br>GREENBELT, MARYLANI | S AND SPACE ADMINISTRATIO<br>I CENTER<br>) 20771 | )N   |                                         |
| CAGE CODE: 25306                                                  |                                                  |      |                                         |
|                                                                   |                                                  |      |                                         |
| S 211 M 70                                                        | Page 1 of 18                                     |      | PEV D                                   |

# Tests Most Commonly Performed During DPA

**External Visual** 

External Prohibited Materials Analysis (PMA)

X-Ray

PIND

Hermeticity

Internal Gas Analysis (IGA)

Internal Visual

Wire Pull

Die Shear



Wire necking above the gold ball bond – reduced wire pull strength



Gross Leak failure of diode – red dye penetrated through a crack to the die NEPP ETW 2021



Corrosion of aluminum pad due to moisture ingress and elevated temperature exposure during screening

(\*) stats for 2021 are incomplete

#### Total number of DPAs per year

#### **Overall DPA Failure Rate**





## DPA Failures for 2017-2021\*

(\*) stats for 2021 are incomplete



#### **DPA Failure Rate by Part Type**



## Failure Rate by Part Type 2017-2021\*

(\*) stats for 2021 are incomplete

#### DPA Failure Rate by Part Type (2017-2021 Lumped)

Breakdown of DPA Failures within a Part Type by Test Type

#### (2017-2021 Lumped)



# Disposition of DPAs for 2017-2021\*



- DPA failures per S-311-M-70 (based on MIL-STD-1580) are dispositioned by a Failure Review Board to assess risk to the flight project
- Through review of data and/or performing additional testing, a lot may be deemed acceptable for use
- Examples of lots that failed DPA but were accepted for use
  - Failure of a transistor for external prohibited materials analysis (PMA) accepted as-is after solder dip is performed on the entire lot
  - Failure of a hybrid for internal prohibited materials analysis (PMA) accepted as-is for some vendors with known use of Pb-free materials inside the part
  - Failure of a hybrid for Internal Gas Analysis (IGA) showing fluorocarbon is accepted as-is after manufacturer demonstrates the fluorocarbon came from cleaning solution used prior to lid seal

# Statistics of FAs for 2017-2021\*



- Perform ~20 failure analyses (FA) a year, mostly for NASA GSFC projects
- FA is usually requested when EEE part has been identified as suspect or faulty during assembly inspection or testing
- Most common EEE parts submitted for FA:
  - Microcircuits 25%
  - Capacitors 25%
  - Hybrids 10%
- Most common failure categories:
  - Electrical Over Stress (EOS) 32%
  - Manufacturing Defects 27%

## Example of DPA: Commercial Hybrid with Gold Ribbons



- Commercial hybrid with gold ribbon bonds that had pull strengths <1g-f to 5g-f instead of 15g-f requirement
- Close-up examination of the ribbons show a crack in the ribbon near the stich, most likely a result of improper tooling setting



## Examples of FA for Electrical Overstress

Resistor overstressed by excessive overvoltage (EOS)



Microcircuits overstressed by excessive overvoltage (EOS)

# Example of FA: Capacitor lot with thinning dielectric

#### Part overview



Exemplar Failure Site in Capacitor 1



#### Exemplar Failure Site in Capacitor 2



- Observed electrical leakage failures during life test of feedthrough capacitors
- Cross-section of several capacitors found thinning dielectric at the location of failure (5-9μm instead of 13μm)
- At the failure site a melt spot and cracks are a result of internal electrical short

# SEM of Failure Site in Capacitor 1

#### Example of FA: PCB Socket Connector with Damaged Contact

#### Close-Up of the Damaged Contact in a Connector



#### X-Ray and Optical Images of damaged and 'good' contact



- Observed damaged contact during post-assembly visual inspection
- One of the five wires inside the contact was broken
- Contact suffered a manufacturing defect that misplaced an essential cinching roll-pinch securing the two outer barrel pieces to the contact assembly. The mishap resulted in cutting one of contact wires

# Example of FA: Temperature Sensor With a Short



*X*-Ray of the failed temperature sensor showing solder bridging the wires 500 µm 90 kV 30 µA Z0

Temperature Sensor damaged during board assembly – internal solder reflowed when a component next to the sensor was touched up with soldering iron

## Summary

- DPA based on MIL-STD-1580 is a key element of GSFC Parts Selection/Screening Protocols per EEE-INST-002
  - Overall rate of non-conformances found during DPA for the past 5 years has been 42%
  - GSFC employs a DPA Failure Review Board to review/disposition lots that do not pass DPA
    - Options include reject lot, use as-is or screen/reprocess for the observed condition to provide assurance for the intended application
    - 4% of all lots are rejected for flight use
- FA in support of NASA programs
  - Microcircuits and Capacitors make up 50% of all FAs
  - EOS and Manufacturing defects account for 59% of FA findings

## Questions?



Multilayer ceramic chip capacitor with a cone-shaped piece of top plate separated after internal electrical short