

sgr HV curr det mode HFW WD mag ⊞ tilt → 200 μm → 200 μ

Overview of the CAES Organic Class Y PIDTP

Scott Popelar, Ph.D. Development Engineer Chief CAES Space Systems Division Colorado Springs, CO

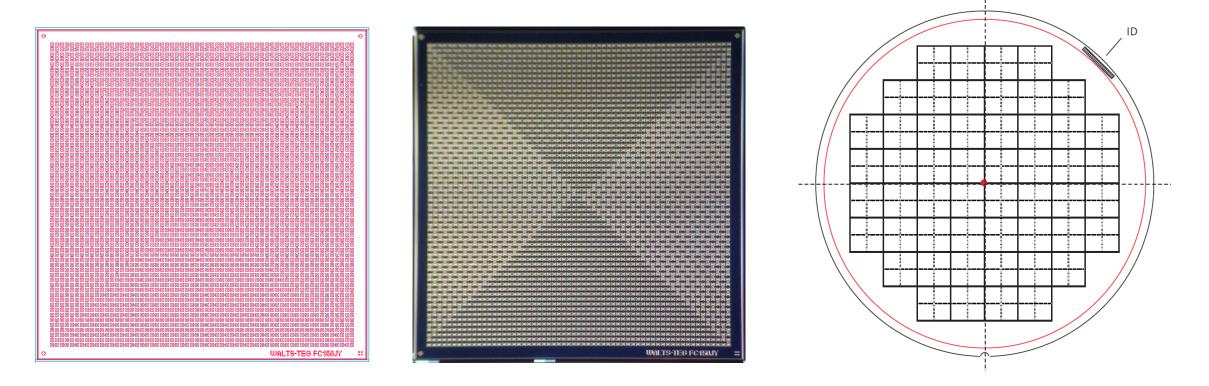
June 13, 2022

5.0kV 8.1mm x35 SE(M)

1.00mm

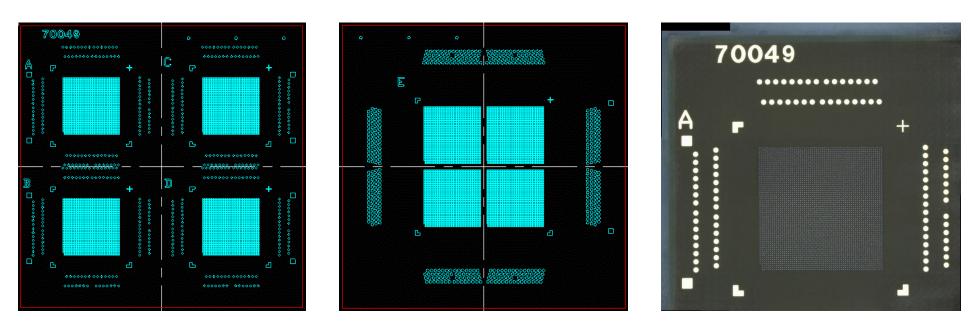
• **PIDTP Objective**

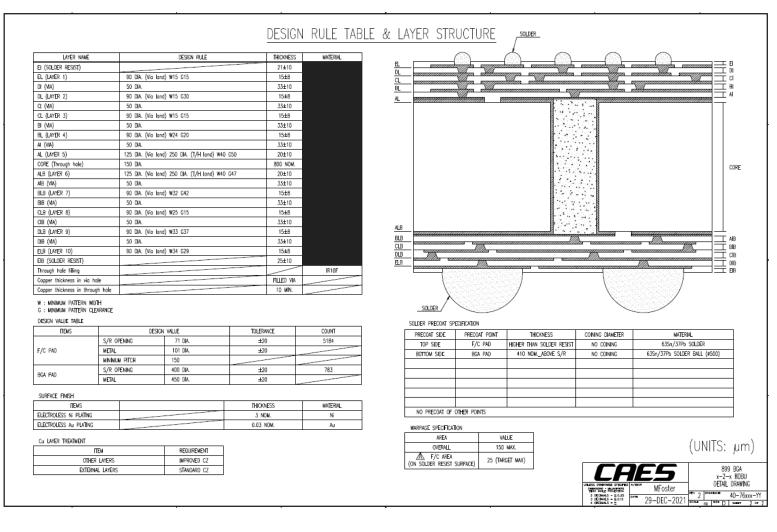
- Satisfy Package Integrity Demonstration Test Plan (PIDTP) requirements for non-hermetic Class Y flip chip on organic assembly technology by addressing manufacturability, quality and reliability issues defined in MIL-PRF-38535 Rev M
- Address both copper pillar and solder bump flip chip interconnect types


PIDTP Contents

- FC150 daisy chain flip chip test vehicle description
- HDBU organic test substrate description
- Underfill material description and outgassing results
- Copper pillar wafer bumping Wafer Level Acceptance (WLA) analysis
- FC150 copper pillar assembly reliability assessments
- Solder bump wafer bumping Wafer Level Acceptance (WLA) analysis
- FC150 solder bump assembly reliability assessments
- Conclusions and Next Steps
- Organic Class Y Poster Child

• FC150 Flip Chip Daisy Chain Test Die


- 150µm I/O pitch daisy chain test vehicle
- 10x10mm die size with 3,718 I/O per die
- 200mm diameter wafer with 208 die per wafer


• FC150 Flip Chip High Density Build-Up (HDBU) Test Substrate

- High Density Build-Up organic substrate technology
- Dual-sided, 1.0mm thick, 45x45mm substrate size
- 80µm solder mask defined pads with Electroless Nickel/Immersion Gold (ENIG) plating
- Eutectic Sn/Pb solder-on-pad (SOP)
- Four 10x10mm die sites per substrate

High Density Build-Up (HDBU) Stack-up

• Substrate Core Material =

- CTE = 22ppm/°C

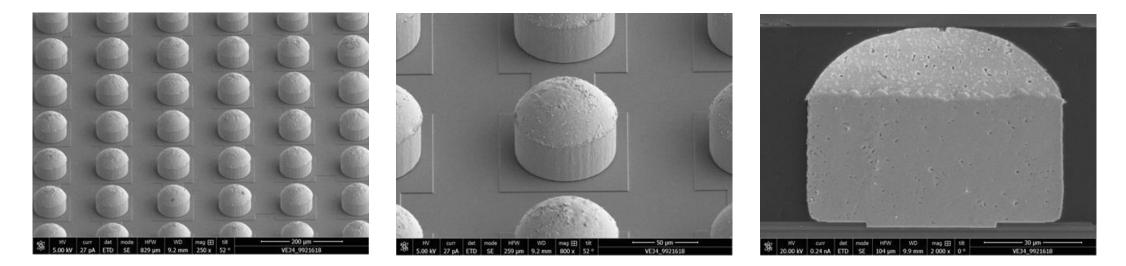
- Conductor Material = Copper
- Dielectric Material =
- Solder Resist =
- Landing Pad Material = ENIG
- Solder on Pad = 63Sn/37Pb alloy
- BGA Ball = 63Sn/37Pb alloy

Underfill Material Properties and Outgassing

OR SONEIDA RESEARCH SERVICES, INC.					TEST REPORT INTERNAL VAPOR ANALYSIS				
	8811 A	MERICAN	VAY • SUITE	100 • ENGL	EWOOD, CO	80112 • PH	ONE: (315) 7	736-5480	
JULIE LANDON AEROFLEX COLORADO SPRINGS, INC. 4350 CENTENNIAL BLVD. COLORADO SPRINGS, CO 80907 UNITED STATES					ORS REPORT NO. DATE TESTED QUANTITY TESTED PACKAGE TYPE		: 218346-004 : 2/26/2016 : 5 : AEROFLEX 48-LD FP IC		
									MFG. CODE
					PO: Rel. N		D-228298		
SAMPLE	ID	16	17	18	19	20			
ION SOURCE PRESSURE	torr	8.9E-6	8.0E-6	8.6E-6	8.3E-6	9.6E-6			
NITROGEN	%v	99.8	99.8	99.8	99.8	99.9			
OXYGEN	ppmv	ND	ND	ND	ND	ND			
ARGON	ppmv	263	267	261	272	257			
CO2	ppmv	156	183	160	177	125			
MOISTURE	ppmv	646	540	589	582	704			
HYDROGEN	ppmv	263	442	279	267	183			
METHANE	ppmv	ND	ND	ND	ND	ND			
AMMONIA	ppmv	ND	ND	ND	ND	ND			
HELIUM	ppmv	ND	ND	ND	ND	ND			
FLUORO- CARBONS	ppmv	ND	ND	ND	ND	ND			
METHANOL	ppmv	209	309	263	273	224			
COMMENTS:								ND = None Detected 1% = 10,000 ppm	

PIDTP Material Properties

- CTE = 22ppm/°C (below Tg)
- CTE = 80ppm/°C (above Tg)
- Tg = 115°C
- Thermal Conductivity = 0.52W/m-K

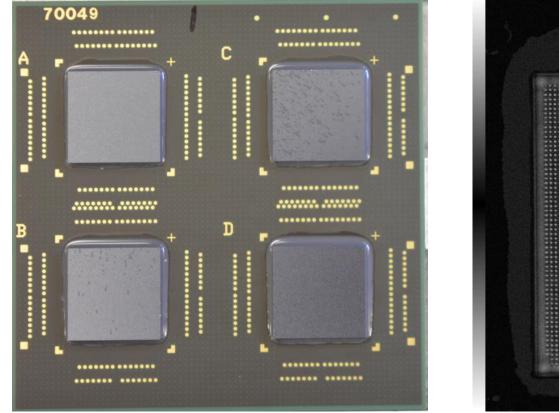

Moisture Outgassing Results

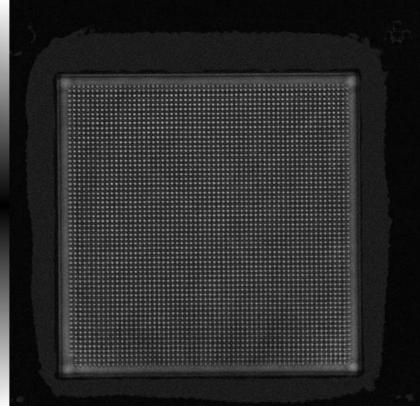
- MIL-STD-883 TM1018
 - Moisture = 612ppm
- ASTM E-595
 - TML = 0.28%
 - CVCM = 0.01%
 - WVR = 0.12%

FC150 Test Die Copper Pillar

- 40µm octagonal passivation opening
- 80µm diameter electroplated Ti/Cu/Ni under bump metallurgy (UBM)
- 80µm diameter copper pillar
- 40µm copper pillar bump height with 25µm eutectic 63Sn/37Pb solder cap

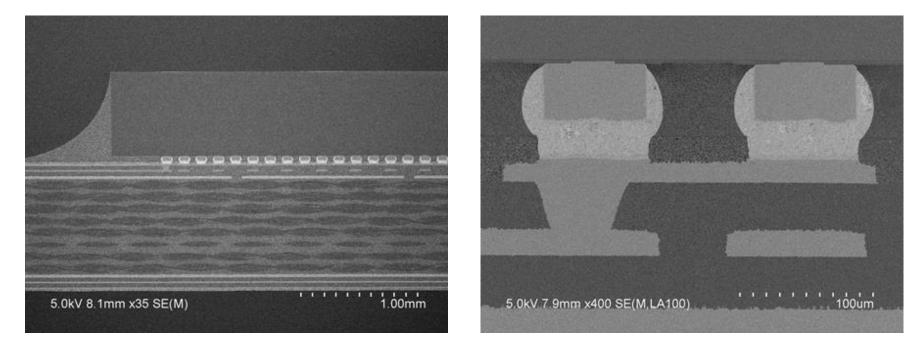
• FC150 Test Die Copper Pillar – WLA Criteria and Results


- FC150 Wafer ID's SI833-0020-10-D5 and SI833-0021-01-A7


Test Type	Test Method	Criteria	Status
Wafer Level Acceptance	Bump Yield Automated optical inspection 	Bump defect rate < 200 ppm	< 5 ppm
Wafer Level Acceptance	Bump Height Automated optical inspection 	Nominal +/- 15 µm	Cpk = 1.4
Wafer Level Acceptance	Bump Shear • JESD22-B117A	Minimum load of 3 mg/µm ²	Cpk = 9.5

FC150 Assembly Monitor – Visual Inspection and CSAM

- Good underfill fillet formation with minimal underfill dispense bleedout
- No underfill voids detected via CSAM inspection



FC150 Copper Pillar Flip Chip Assembly

FC150 Assembly Monitor – Cross Section SEM

- Excellent solder joint wetting and formation; no defects detected
- Flux formulation enables wicking up copper pillar for enhanced reliability
- No underfill defects detected

FC150 Copper Pillar Flip Chip Reliability Assessments

Condition B Temperature Cycle Testing (-55/125°C)

- Parts assembled with underfill
- 4000 cycles, no failures detected

• 125°C High Temperature Storage

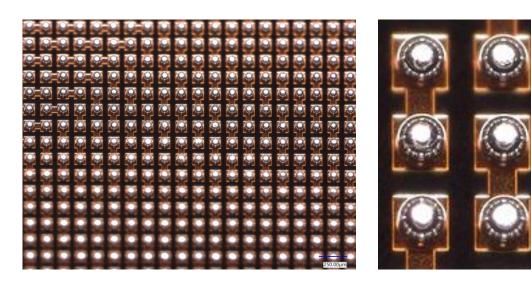
- Parts assembled with underfill
- 4000 hours, no failures detected

• 150°C High Temperature Storage

- Parts assembled with underfill
- 4000 hours, no failures detected

Multiple Reflow Testing

- Parts assembled with underfill
- 10 reflow exposures, no failures detected


Moisture Loading

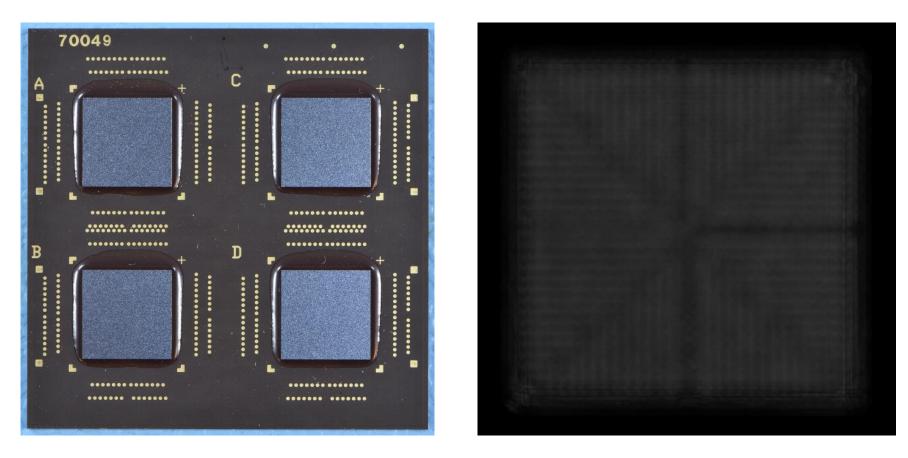
- Parts assembled with underfill
- 1000 hours 85°C/85%RH, no failures detected

FC150 Test Die Solder Bump

- 150µm I/O pitch daisy chain test vehicle
- 10x10mm die size with 3,718 I/O
- 40µm octagonal passivation opening
- Polyimide re-passivation layer with 30µm diameter openings
- 65µm diameter electroplated Ti/Cu/Ni under bump metallurgy (UBM)
- 70µm eutectic 63Sn/37Pb solder bump

• FC150 Wafer Level Acceptance – Criteria and Results

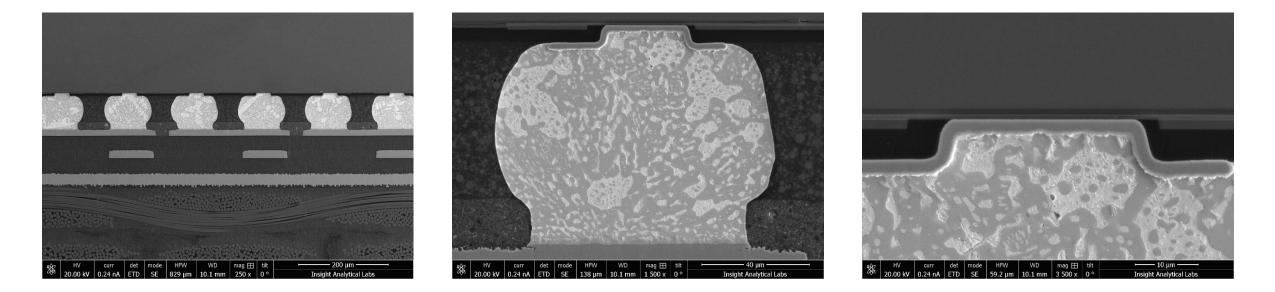
- FC150 Wafer ID's SI8E3-0021-04-A5, SI8E3-0021-03-F5, SI8E3-0021-02-D2


Test Type	Test Method	Criteria	Status
Wafer Level Acceptance	Bump Yield Automated optical inspection 	Bump defect rate < 200 ppm	< 20 ppm
Wafer Level Acceptance	Bump Height Automated optical inspection 	Nominal +/- 15 µm	Cpk = 1.5
Wafer Level Acceptance	Bump Shear • JESD22-B117A	Minimum load of 3 mg/µm ²	Cpk = 5.9

FC150 Solder Bump Flip Chip Assembly

FC150 Assembly Monitor – Visual Inspection

- Good underfill fillet formation with minimal underfill dispense bleedout
- No underfill voids detected via CSAM inspection



FC150 Solder Bump Flip Chip Assembly

FC150 Assembly Monitor – Cross Section SEM

- Excellent solder joint wetting and formation; no defects detected
- No underfill defects detected

FC150 Solder Bump Flip Chip Reliability Assessments

• Condition B Temperature Cycle Testing (-55/125°C)

- Parts assembled with underfill
- 5000 cycles, no failures detected; extended testing to 8000 cycles (3 failures detected)

125°C High Temperature Storage

- Parts assembled with underfill
- 4000 hours, no failures detected

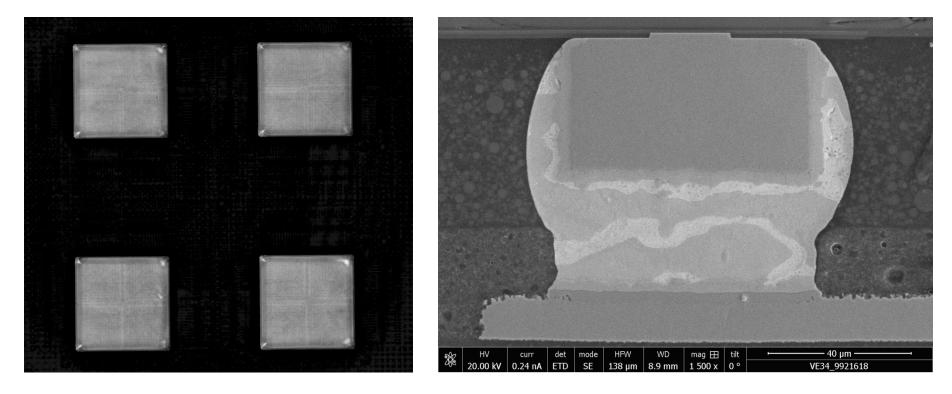
• 150°C High Temperature Storage

- Parts assembled with underfill
- 4000 hours, no failures detected

Multiple Reflow Testing

- Parts assembled with underfill
- 10 reflow exposures, no failures detected

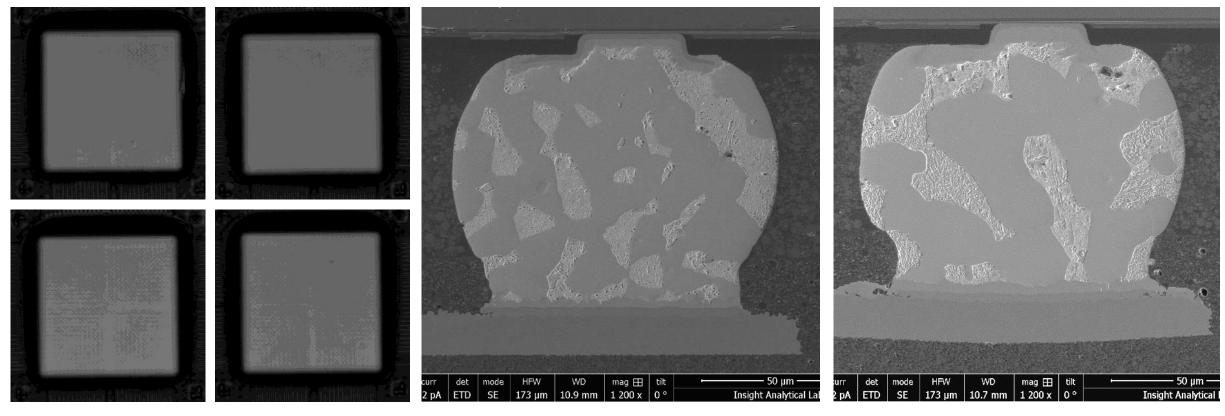
• Multiple Reflows followed by Condition B Temperature Cycle Testing


- Parts assembled with underfill
- 5000 cycles, no failures detected

Temperature Cycle Testing – Sample Failure Analysis

Condition B Temperature Cycle Testing (-55/125°C)

- CSAM and Cross section analysis after 4000 cycles (zero failures)
- No indication of underfill delamination; no evidence of underfill voids
- Significant grain coarsening within solder joint (expected)



High Temperature Storage Testing – Sample Failure Analysis

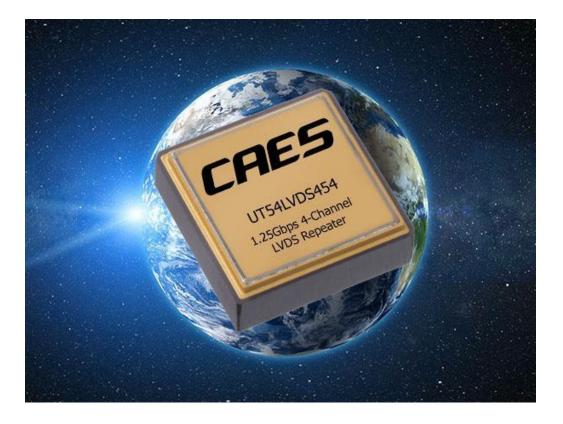
125°C and 150°C High Temperature Storage

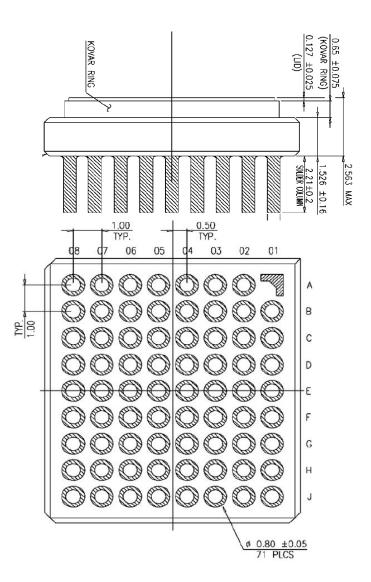
- CSAM and Cross section analysis after 2000 hours; extended testing to 4000 hours (zero failures)
- No indication of underfill delamination; no evidence of underfill voids
- Grain coarsening within solder joint and IMC growth (expected)

Conclusions

- CAES has completed flip chip on organic PIDTP documentation and reliability assessments per MIL-PRF-38535, utilizing its FC150 test vehicle
- PIDTP documentation and reliability assessments have been completed for both copper pillar and solder bump flip chip interconnect constructs
- CAES has qualified wafer bumping supplier for copper pillar and solder bump wafer bumping for Organic Class Y products

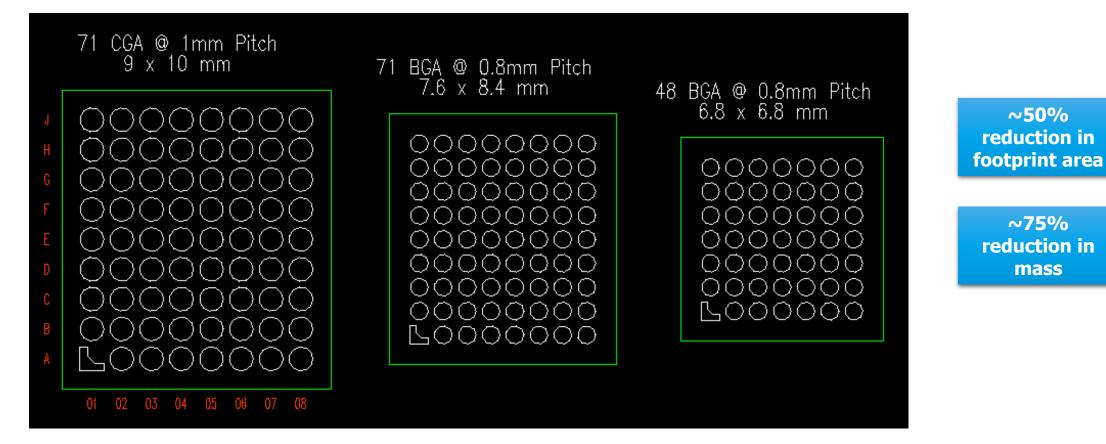
• Next Steps


- DLA audit of CAES Colorado Springs facility to certify for Organic Class Y flip chip manufacturing
 - Scheduled for July 19-21; goal is conditional certification pending release of MIL-PRF-38535 Rev M
- DLA audit of wafer bumping facility to allow for QML wafer bumping of CAES products
 - Target second half of 2022

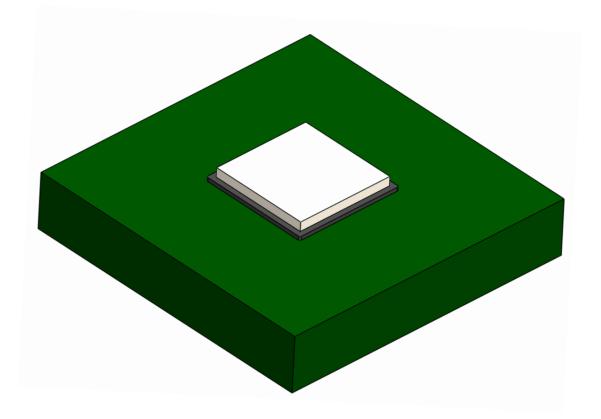

CAES Organic Class Y Poster Child – High Speed LVDS Standard Product conversion from Hermetic Flip Chip QML-V to Organic Class Y

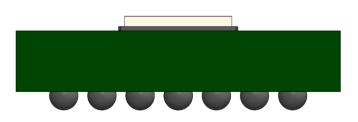
• 71 I/O Ceramic Column Grid Array Package

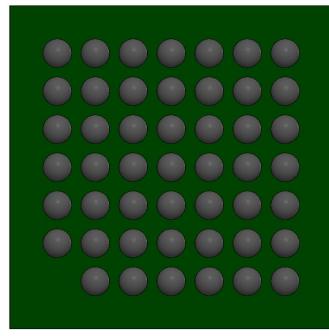
- CAES High Speed LVDS Standard Product
- Hermetic flip chip QML-V package configuration



High Speed LVDS footprint shrink to 48 I/O BGA Organic Class Y Package


- Organic Class Y footprint shrink utilizes 0.8mm pitch and no seal ring requirement
- Significant reduction in footprint area and mass with Organic Class Y configuration





• High Speed LVDS in Organic Class Y package configuration

- Lower package and manufacturing cost, higher assembly yield
- Smaller package footprint and overall mass compared to ceramic

