

Expansion of Radiation Hardness Assurance Tool Suite

NASA NEPP Electronics Technology Workshop, June 2022

Brian Sierawski Vanderbilt University

This work supported by NASA NEPP Grant #80NSSC20K0424 and the U.S. Department of Defense under prime contract no. W52P1J2093009.

Expansion of RHA Tool Suite FY22

<u>Objective</u>	<u>Approach</u>
This effort proposes to evaluate assessments of single event functional interrupts and expand online capabilities through integrating environment and effects models developed post-CREME96 for radiation hardness assurance.	 Investigate application of SEE rate prediction methods for functional interrupts in complex devices
	 Expand upon existing on-orbit prediction tools through implementation of probabilistic radiation environments and effects, inclusion of displacement damage,
PI: Brian Sierawski	 Provide on-line guidance to designers for electronics part selection and SEE rate prediction
Vanderbilt University	 Improve user access to tools and pursue interoperability with model-based, system level modeling approaches.
<u>Milestones</u>	<u>Tech Transfer</u>

The Radiation Effects Engineer's Toolbox

RADHUB Concept

Vanderbilt Engineering

- Goal companion platform to complement CRÈME and serve as host for rapid dissemination of analytical models in a common, accessible, and referenced location
 - Open-access, maintain path for licensing / distribution, closed programs
 - Split from CRÈME, enable bleeding edge tools
 - Home for published analyses to disseminate to community
 - Improved links between test planning, data collection, and effects prediction

CRÈME Status

- Supports over 3000 users, still adding 37 users / month
- Considered stable, legacy codes
- Cursory treatment of proton dose, ignores electron contribution
- CREME96 was never designed to include electron environments
- Heavy ion analysis limited to RPP-based models for SEU
- Storage bloat 50GB+ user data
- Performance, extendibility, maintainability issues hinder expansion

RADHUB Platform

http://			
RADHUB	Search for Q	🚰 Contact	➡ Login
RADIATION			
🕸 Ion Stopping	Introduction		
Facility Bragg Curves	The RadHub website is a platform for online access to tools related to radiation effects in microelectronics. It represents a collection of codes that		
🛎 Cross Section Curve			
ENVIRONMENTS	Access The site is currently in an alpha phase of development and not yet publicly available. Access to the tools requires an account created by invitation		
	only.		
ኞ Solar Particle Event	Quick Links • Tutorial		
🛎 World Map	Data Formats Acronyms		
L Terrrestrial Neutron SINGLE EVENT EFFECTS	 Modern web technologies to integrate existence develop models, provide data for quick car 	sting to Iculatio	ools, ons
믋 Effective Flux 믋 RPP	 Direct integration of legacy Fortran codes development of Python models 	n of legacy Fortran codes, Python models	
🛎 Reliability	Electronics Parts and Packaging Grant #80NSSC20K0424. Any opinions, findings, and conclusions or recommendations expressed in this material		
TOTAL DOSE	 Centralized around graph, data table result 	Its	
🛎 Depth Dose			
For Development	 Alpha test phase (vanderbilt and NEPP) or 	n-going	3

RADHUB Developments

Sierawski, Expansion of RHA Tool Suite, NASA NEPP Electronics Technology Workshop, June 2022

Proton and ion stopping Used to investigate LET, range

- Stopping power and range for ions in silicon and aluminum targets
- Based on SRIM data (currently)

Facility Bragg curves

٠

- Used to select ions with sufficient range, appropriate LET
- Elec. stopping power vs depth (Si)
- LBNL 88", TAMU K150 & K500
- Responsive graphs adjust to user selections and parameters, easily export json, csv, xlsx, pdf

RADHUB for Accelerated Test Planning

RADHUB for SEE Analysis

Cross section data fitting

- Provides consistent parameter fits
- Performs MLE fits to Weibull, Bendel cross sections, suggests parameters
- Accounts for statistical error in data
- Calculates Petersen figure of merit
- Editable data table allows entry of event data, calculates error bars
 - 1σ, 90% CI, asymmetric low counts
- Data and graphs export for reports and journals (eg. *IEEE TNS*)

References N. Gehreis, "Confidence limits for small numbers 1, 1986, p. 336-346. P. Calvel, C. Barillot, P. Lamothe, R. Ecoffet, S. Du

RADHUB for Solar Environments

Solar cycles and sunspots

- Used for mission planning, parameterizing particle environment models
- Historical and predicted sunspot counts from SIDC
- Reporting changed in 2015, providing adjusted Wolf numbers based on input from Royal Observatory
- Solar protons and heavy ions
 - Used for worst case CI calculations
 - Implemented ESP/PSYCHIC, integrated SOLPRO

RADHUB for Terrestrial Environments

IGRF13 world magnetic intensity maps – 1995-2030

- Used to explore impact of mission profile on near-Earth environment
- Terrestrial neutron spectrum
 - Used to scale neutron flux with lat. long. and altitude
 - Based on JESD89B and seutest.com

Bendel model Used for proton SEE rates

- Imports proton spectra in CRÈME, SPENVIS formats
- Accepts parameters for multiple parts
- Rate predictions export to json, csv, xlsx
- **RPP** and effective flux models •

•

- Used for heavy ion SEE rates
- Imports LET spectrum in CRÈME, SPENVIS formats
- **Reliability calculations for single** • bit, multiple bit errors

RADHUB for On-Orbit SEE Predictions

q

- Used as first pass evaluation of

- shielding effectiveness
- Evaluates proton, electron, brem dose rates
- Implemented with SHIELDOSE-2

TID failure probability

- Used to evaluate part-to-part and environment variability
- Implemented Xapsos TNS 2017
- Built in environment definitions
- Research into probabilistic analyses on-going

RADHUB for On-Orbit TID Predictions

RADHUB Modules Currently Developed

- Ion stopping based on SRIM stopping power and range for ions in silicon and aluminum
- Range plots LBNL 88", TAMU K150 & K500
- Weibull fitting to heavy ion cross sections
- Solar cycle data historical and predicted from on S.I.D.C
- ESP, PSYCHIC, SOLPRO solar protons and heavy ions
- IGRF13 world magnetic intensity maps 1995-2030
- Terrestrial neutron spectrum JESD89B
- CREME96 and SPENVIS environment parsers
- Bendel predictions for on-orbit proton SEE rates
- RPP predictions for on-orbit heavy-ion SEE rates
- Peterson Figure of Merit for on-orbit heavy-ion SEE rates
- Effective flux predictions for on-orbit heavy-ion SEE rates
- Reliability calculations for single bit, multiple bit errors
- Depth dose based on SHIELDOSE2
- TID failure probability for part and environment variability Xapsos

Summary

http://			
Ш RADHUB	Search for Q	唇 Contact	→) Login
RADIATION			_
🕸 Ion Stopping	Introduction		_
🏘 Facility Bragg Curves	The RadHub website is a platform for online access to tools related to radiation effects in microelectronics. It represents a collection of codes that offer quick calculations of the natural space and terrestrial environments as well as effects models for prediction.		_
🛎 Cross Section Curve	Access		_
	The site is currently in an alpha phase of development and not yet publicly available. Access to the tools requires an account created by invitation		_
ঞ্চ Solar Cycle	only.		_
苺 Solar Particle Event	Quick Links • Tutorial		_
🛎 World Map	Data Formats Acronyms		
Terrrestrial Neutron SINGLE EVENT EFFECTS	 RADHUB is undergoing alpha test and add module development, plan to expand user 	litional base i	n 202:
🖬 Bendel	module development, plan to expand user	Dasei	
■ Effective Flux	 Looking to collaborate with accelerator fac 	ilities,	
₩ RPP	bootcamps, and workforce development p	rogran	าร
🛎 Reliability	Electronics Parts and Packaging Grant #80NSSC20K0424. Any opinions, findings, and conclusions or recommendations expressed in this material		
	 Feature requests are welcome, contact 		
🛎 Depth Dose	brian ciarawski@vandarbilt.adu		
🖬 Pfail	Ditall.Sleiawski@vallueiDit.euu		

The SCALE (Scalable Asymmetric Lifecycle Engagement) program for workforce development through Purdue University has enabled the following undergraduate students to make direct contributions to this program

- Nicholas Hopwood
- Chloe Champagne
- Thomas Wu
- Alexander Fullerton
- Kensington Huber
- Jack Evans