

GE Global Research

Development of SEB-Immune High Voltage SiC Power Devices for Lunar Applications

Arijit Sengupta, Dennis Ball, Arthur Witulski, Kenneth Galloway, Ronald Schrimpf, Robert Reed, Mike Alles, Mick Howell and John Hutson

Institute for Space and Defense Electronics Vanderbilt University

> Biju Jacob, Collin Hitchcock General Electric Research

Presentation to 13th Annual NASA Electronic Parts and Packaging (NEPP) Program's Electronics Technology Workshop (ETW)

06/14/22

NASA Lunar Surface Technology Research (LuSTR)

Next-gen spacecraft and lunar transportation require

orders-of-magnitude more power!

HABITABLE MOBILITY PLATFORM

LUNAR TERRAIN VEHICLE

NASA's Lunar Exploration Program Overview Sept.2020

Relative Capabilities of Si, SiC, GaN

High Frequency Switching

After T.P Chow, et al, IEEE TED, 2017 quoted in A. Sengupta, ProQuest Dissertation Publishing, 2021.

Radiation Effects in SiC Power Devices

- Total Ionizing Dose (TID) charge trapped in insulating layers
 - Parametric shifts in device electrical characteristics (i.e., threshold voltage)
- Single Event Effects ions deposit charge in active device regions
 - Transient current/voltage pulses
 - Parametric shifts in leakage currents
 - Single event burnout (SEB) catastrophic
 - Single event gate rupture (SEGR) catastrophic

From: G. Consentino et. al, 2014 IEEE Applied Power Electronics Conference and Exposition

Overview of the different types of damage induced by heavy-ion in 1200V SiC power MOSFETs as a function of the ion LET from C. Martinella et. al, Microelectronics Reliability, Jan 2022.

Power Device – Safe Operating Area (SOA)

Power Device – Ion-Induced Operating Area

- Deposits charge along track
- Vertical current flow
- Creates resistive shunt between source and drain
- Thermal damage occurs at the metal-semiconductor interface, and in crystal lattice

 $R_{ION} = \rho_{ION} * L_{ION} / A_{ION}$

 $Power = I_{ION}^{2} * R_{ION}$

Electrical Performance:

- SEE-tolerant SiC power diodes: Minimum 1200 V, 40 A, with maximum recovery time of 40 ns
- SEE-tolerant SiC power transistors: Normally off (enhancement mode), minimum 600 V, $40 \text{ A}, \text{R}_{ds_on} < 24 \text{ m}\Omega$ while preserving low switching losses.

Radiation Goal:

• No heavy-ion induced permanent destructive effects upon irradiation while in blocking configuration (in powered reverse-bias/off state) with ions having a silicon-equivalent surface incident linear energy transfer (LET) of 40 MeV-cm²/mg of sufficient energy to maintain a rising LET level throughout the epitaxial layer(s).

Design of SEB-Immune Diode/MOSFET

- VU and GE design device intended to survive catastrophic SEB
- 3D TCAD heavy ion sensitivity study VU
 - Increase epi thickness
 - Decrease epi doping
 - Effective increase in voltage rating
 - Note: 3300 V device shows SEB @ 850V

Ion-Induced Electron Current Density

3D TCAD heavy ion simulation of SiC MOSFET variants

- LET = $60 \text{ MeV-cm}^2/\text{mg} @ 500 \text{ V}$
- 3300 V and 4500 V devices show significantly lower electric fields compared to the 1200 V device
- Current densities similar for all variants

NEPP ETW 2022

1200 V

Aba(RiechticField-V) (V°cm^-1)

.000++04

8.333++05

6.667+05 5.000+05

3,333++05

1.667#+05 4.850#+02

Ion-Induced Electric Field Redistribution

3D TCAD heavy ion simulation of SiC MOSFET variants

- LET = $60 \text{ MeV-cm}^2/\text{mg} @ 500 \text{ V}$
- 3300 V and 4500 V devices show significantly lower electric fields compared to the 1200 V device
- Power density $(\vec{J} \cdot \vec{E})$ is much lower with the longer Epi length at back interface MOSFET

2D-cutplanes of the internal electric field for 1200V MOSFET and diode, when biased at 500 V, 1200 V, and 1600 V after D.R. Ball, VU Dissertation, 2020

Design of SEB-Immune Diode/MOSFET

NEPP ETW 2022

Experiment: Ion beam testing of 1200 V SiC Heavy Ion Irradiation With Short Range Ions

Vanderbilt Engineering

- Heavy ion radiation testing of 1200 V SiC diode with 10 µm thick epi layer
 - Ion LET = 7 MeV-cm²/mg with range of 6 μ m performed at VU Pelletron
 - Device shows no ion-induced leakage, nor catastrophic SEB
 - Supports concept of increasing epitaxial layer thickness, also has implications for SEB rates due to angular effects

Accepted for poster at NSREC 2022

VU Pelletron Irradiation - short range ions

TAMU Cyclotron Irradiation - long range ions

NEPP ETW 2022

Timeline of Activities

Packaging, Parylene Coating, Electrical Testing

Vanderbilt Engineering

Performed for 124 Parts

Scheduled Heavy-ion Testing at TAMU (June 2022)

Energy

Range

Testing Priorities:

- **1. SEB threshold determination for 3300 V devices**
- 2. Correlation with previous results for 1200 V devices

Heavy-ion Testing at TAMU (June 2022)

Vanderbilt Engineering

Devices to be tested:

- 1.2kV Planar MOSFET
- 3.3kV Planar Diode
- 3.3kV Planar MOSFET
- 3.3kV Charge-Balance (CB) Diode
- 3.3kV Charge-Balance (CB) MOSFET

- Silicon carbide diodes and MOSFETs well-suited to NASA LuSTR highvoltage bus goals for lunar exploration, but SEB is reliability issue
- Testing and simulation indicate the SEB voltage boundary is related to the thickness of the epitaxial region-thicker epi corresponds to higher SEB voltage
- Simulations and test results show it is possible to create a new "target" device that meets the LuSTR goals for electrical breakdown, SEB voltage boundary, and on resistance
- General Electric has the wafers and will soon begin fabrication of target diodes and MOSFETs
- Heavy-ion testing for existing GE 3.3. kV diode and MOSFET variants is scheduled for late June

"Epi" – Abbreviation of "Epitaxial"

GE – General Electric Corporation

JBS – Junction-Barrier Schottky Diode

- LET Linear Energy Transfer
- LuSTR Lunar Surface Technology Research
- SEB Single Event Burnout
- SEE Single Event Effects
- SELC Single Event Leakage Current
- SiC Silicon Carbide
- TAMU Texas A&M University
- TCAD Technology Computer-Aided Design Software
- V_{BR} Breakdown Voltage of a material
- VU Vanderbilt University
- WBG Wide-bandgap semiconductor material