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NASA Lunar Surface Technology Research
(LuSTR)
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Relative Capabilities of Si, SiC, GaN
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After T.P Chow, et al, IEEE TED, 2017 quoted in A. Sengupta, ProQuest
Dissertation Publishing, 2021.

\

Vanderbilt Engineering

NEPP ETW 2022



Radiation Effects in SiC Power Devices \(
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* Total Ionizing Dose (TID) — charge trapped in insulating layers

Parametric shifts in device electrical characteristics (i.e., threshold voltage)

» Single Event Effects — ions deposit charge in active device regions

Transient CU.ITCIIt/ Voltage plllSCS From: G. Consentino et. al, 2014 IEEE Applied

Power Electronics Conference and Exposition

Parametric shifts in leakage currents
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Overview of the different types of damage induced by heavy-ion in 1200V
0 , , , , , SiC power MOSFETs as a function of the ion LET from C. Martinella et. al,
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Power Device — Safe Operating Area (SOA) V
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* Vertical power device JBS Diode MOSFET
» Suitable for diodes and MOSFETs

Poly-Si
* Vertical current flow "

» Performance dominated by epitaxial
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Power Device — Ion-Induced Operating Area

* Jon strike

Rion = Pron ¥ Lion/Ajon

JBS Diode

Deposits charge along track
Vertical current flow

Creates resistive shunt between

source and drain
N- drift layer
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Thermal damage occurs at the
metal-semiconductor interface,
and in crystal lattice
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LuSTR SiC Program
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Electrical Performance:

» SEE-tolerant SiC power diodes: Minimum 1200 V, 40 A, with maximum recovery time
of 40 ns

» SEE-tolerant SiC power transistors: Normally off (enhancement mode), minimum 600 V,
40 A, Ry, ., <24 mQ while preserving low switching losses.

Radiation Goal:

* No heavy-ion induced permanent destructive effects upon irradiation while in blocking
configuration (in powered reverse-bias/off state) with ions having a silicon-equivalent
surface incident linear energy transfer (LET) of 40 MeV-cm?/mg of sufficient energy to
maintain a rising LET level throughout the epitaxial layer(s).
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Design of SEB-Immune Diode/MOSFET
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* VU and GE design device intended to survive catastrophic SEB
« 3D TCAD heavy ion sensitivity study — VU

* Increase epi thickness 1200 V 3300 V 4500 V
* Decrease epi doping [l e R e (S S—
» Effective increase in voltage rating
* Note: 3300 V device shows SEB @ 850V
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Ion-Induced Electron Current Density \f
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3D TCAD heavy 1on simulation of SiC

MOSFET variants
1200V 3300V 4500V
« LET=60MeV-cm*mg @ 500 V
e 3300V and 4500 V devices show ! /
significantly lower electric fields -
compared to the 1200 V device
*  Current densities similar for all variants
-l.wm
-;mm
[ -
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ITon-Induced Electric Field Redistribution \(
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3D TCAD heavy ion simulation of SiC
MOSFET variants

. _ o2
LET = 60 MeV-cm“/mg @ 500 V 1200 V 3300V 4500 V

e 3300V and 4500 V devices show = -
significantly lower electric fields
compared to the 1200 V device '
* Power density (f - E ) 1s much lower with |
the longer Epi length at back interface
MOSFET
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2D-cutplanes of the internal electric field for 1200V MOSFET and diode, when
biased at 500 V, 1200 V, and 1600 V after D.R. Ball, VU Dissertation, 2020
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Design of SEB-Immune Diode/MOSFET \f
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LuSTR Requirement Standard
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Experiment: Ion beam testing of 1200 V SiC |
Heavy Ion Irradiation With Short Range Ions \f
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* Heavy 1on radiation testing of 1200 V SiC diode with 10 um thick epi layer

Diode Current, Ir (A)

« Ion LET =7 MeV-cm?/mg with range of 6 um performed at VU Pelletron
* Device shows no ion-induced leakage, nor catastrophic SEB
*  Supports concept of increasing epitaxial layer thickness, also has implications for SEB rates

due to angular effects
Accepted for poster at NSREC 2022

VU Pelletron Irradiation - short range ions TAMU Cyclotron Irradiation - long range ions
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Timeline of Activities Lf_

Vanderbilt Engineering

Modhs Crig 1 2 3 4[5 6 7|8 9 10 11 12 13[14 15 16 17 13 19|20 21 22 23 24 Leverage existing parts
0.0 Contractin Place with GE o
1 GE Delivery of Existing Devices to VU * GE MOSFETS/Diodes
11 e Doy * VU 20 kV PiN diodes
A ckaging
2 VU Preparation for first ion test —_ * Commercial devices
2.1 Electrical Measurements, Circuit Boards, efc. .
3 TCAD Model of SiC Diodes and MO SFETs
31 |Model Creation and Calibration 1
32 Hectrical and Radiation Simulations
4 1st heavy-ion test of GE devices at TAMU
4.1 1st heavy-ion test q
42 Data Reduction and Analysis
5 GE and VU spec., order wafer
51 Design of wafer set
5.2 Wafer order and sourcing 1
6 VU failure analysis on pristine and post-rad devices . . oo
6.1 | Apply nano-photonic techniques to mage SiIC Faulls L New Des1gn Activities
6.2 Nano-photonic techniques to ima: e & -rad damay o
7 VU electrical testing in-situ of pre- and post-rad devices MOSFETS/DIOdeS
71 | t high-voltage ¢
12 Measure performance of pre- and post-rad devices
8 GE mask design
81 |Design of masks 1
82 Mask Fabrication
9 GE fabricates RH diode and MO SFET in parallel N
10 GE tests, packages, and ships new RH Devices
11 Vanderbilt conducts d heavy-ion test
111 Preparation of crcuit boards, pre-rad measure new devices
11.2  |Conduct ion-beam test at TAMU, reduce data -
12 Technology Transfer -
121  |Annual Reports - -
122 [IEEENSREC S Y (akso TNS journal) . .
123  |Quarterty Reports L ] [ ] [ ] L ] [ ] [ ] [ ] [ ]
124 |Fnal Report [

Orignal task QI Orignal Fab \clualPmj Old & Newl

1 Wafer Delivery Date Stll Uncertain
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Packaging, Parylene Coating, Electrical Testing
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Performed for 124 Parts
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Scheduled Heavy-ion Testing at TAMU (June 2022) %“f
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Target Ion Spectrum for TAMU

High-Energy High Range Ion(s)

Pr ion

Energy ——

Low-Energy Low Range Ion | Low-Energy High Range Ion(s)
- O ion at VU Pelletron

Ne, Ar ions

Range —
Testing Priorities:
1. SEB threshold determination for 3300 V devices
2. Correlation with previous results for 1200 V devices
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Heavy-ion Testing at TAMU (June 2022) ;\f
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1600 | T
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ke b i
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3.3kV planar devices @LET ~ 43
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(b) Predicted SEB Threshold for new
target devices
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Summary
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* Silicon carbide diodes and MOSFETs well-suited to NASA LuSTR high-
voltage bus goals for lunar exploration, but SEB is reliability issue

» Testing and simulation indicate the SEB voltage boundary is related to the
thickness of the epitaxial region-thicker epi corresponds to higher SEB
voltage

« Simulations and test results show it is possible to create a new “target” device
that meets the LuSTR goals for electrical breakdown, SEB voltage boundary,
and on resistance

* General Electric has the wafers and will soon begin fabrication of target
diodes and MOSFETs

* Heavy-ion testing for existing GE 3.3. kV diode and MOSFET variants is
scheduled for late June
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Definition of Acronyms
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“Ep1” — Abbreviation of “Epitaxial”

GE — General Electric Corporation

JBS — Junction-Barrier Schottky Diode

LET — Linear Energy Transfer

LuSTR — Lunar Surface Technology Research
SEB — Single Event Burnout

SEE — Single Event Effects

SELC — Single Event Leakage Current

S1C — Silicon Carbide

TAMU — Texas A&M University

TCAD — Technology Computer-Aided Design Software
Vyr — Breakdown Voltage of a material

VU — Vanderbilt University

WBG — Wide-bandgap semiconductor material
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