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Motivation
• Silicon transistor technology has reached its theoretical limits in terms of size, switching speed, 

power/current density and stand-off voltage.

• Wide Band Gap Transistors promise unprecedented power/current density, efficiency, high 
voltage and high-speed operation compared to Si technology.

• There are at least three degenerative effects that are a result of exposure to high electric fields.  
These include catastrophic voltage break down VGS, increased leakage current IDS, and RDS(on) shift.

• The purpose of this investigation is to gain insight into the effects of voltage and temperature on a 
few of these susceptible parameters (VGS, IDS and RDS(on)) in terms of performance and reliability.
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Basic Operating Principles 

• GaN FET devices operate based on the piezo-electric properties of the 
GaN crystalline structure (Wurtzite).

• When the GaN material is subjected to mechanical stresses imposed 
by thin layer deposition of AlGaN to its surface, a high concentration 
of highly mobile elections is formed at the interface.

• Conduction of the device is facilitated by this 2-dimensional electron 
gas (2DEG).
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Stressor Impact 

Voltage:  VDS = 200Vdc, 160Vdc Dielectric Failure, RDS(on) shift 

Temperature:  TJ Observation

Hard Switching:  Transient Power Dissipation RDS(on) shift 

The goal was to devise a test that can accelerate the life the eGaN FET 
and analyze its reliability with a focus on RDS(on) shift, VDS stand-off 
voltage, and VGS threshold drift.
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Stressors
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Methodology

• Employ a resistive hard switching circuit and monitor leakage current, 
IDS at elevated VDS > 200Vdc.

• Incur device dynamic switching power dissipation driven by dV/dt 
and high drain current.

• Monitor RDS(on) shift and apply stress to the gate circuit VGS.



Enhancement mode Gallium Nitride (eGaN) power transistor
Ratings:
• VDS = 200V
• RDS(on) = 50mΩ
• ID = 8.5A, Pulsed ID= 42A

Package:
• Radiation hardened, hermetically sealed 
• 4 lead ceramic surface mount device 
• Incorporating a 2.77mm x 0.95mm die scale low-loss, high-speed, high-

power density eGaN FET
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Device Selection



Electrical Test Set-Up

DUT Board
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Electrical Parametric Test Set-Up

Electrical measurements were performed at TA = 25°C, -55°C 
and 125°C, in accordance with the data sheet 

Initial Rds(on) Measurements



• Consisted of two boards each populated with 6 eGaN devices.
• Transistors commutated in a sequential fashion.
• A single transistor per board is turned on at a given instance in time.
• Board 1 was biased with a 200Vdc HV supply while Board 2 is biased with a 160Vdc 

supply.  
• Voltages were selected to exasperate degenerative effects such as RDS(on) drift.
• Burn-in (BI) data acquisition consisted of:

• Drain current measurements using a data logger
• Composite drain current measurements
• Static RDS(on) measurements
• Dynamic RDS(on) measurements

• Device characterization performed while mounted in the burn-in fixture prior to BI.
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Burn-In Hard Switching Test [5] 
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Burn-In Hard Switching Test – Schematic



Stress specimens consisted of two groups of 12 devices, with 
simultaneous stress on 4 sets of devices (2 from each group).
Note, 200Vdc and 160Vds are the absolute and 
recommended maximum ratings of the device, respectively.

Group One:
• Stressed at TA = 10°C
• 6 devices biased at VDS  = 200Vdc
• 6 devices biased at VDS  = 160Vdc*

Group Two:
• Stressed at TA = 80°C
• 6 devices biased at VDS  = 200Vdc
• 6 devices biased at VDS  = 160Vdc*

* Stress voltage for 2 sets of devices was lowered from 
240Vdc to 160Vdc after initial burn-in tests
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Initial eGaN Burn-In Block Diagram

160V



During the initial start-up, the 160V devices were biased at 240V
• The intent was to accelerate the failure mechanisms by introducing VDS stress 20% 

above the absolute maximum rating of 200V.

• Two boards in each chamber were wired for current sharing.

• At 240V the devices were operating hotter than expected.

• The bias was reduced to 200V.

• The test was terminated after a short period.

• Subsequent testing was performed at 160V.
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Initial Burn-In Bias Configuration 
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The plot above shows the composite commutated 
current sharing profile for the Cold 200V and 
240V boards during the initial start-up.   The 
chamber is transitioning from 25°C to 10°C as the 
power supply was adjusted to obtain a peak 
commutated current of approximately 5 Amp.

The plot below show the case temperature profile of 
each device measured at the top for the package and 
single temperature point measure at a central DUT/
board interface.
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Initial Turn On – Hard Switch COLD Chamber 
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At the 85-minute mark, the current was set to 
the appropriate level:  4.8A for the 240V board 
and 4.3A for the 200V Board.  At this point the 
case temperature of all 12 devices was at 10°C.

The plot below shows the case temperature of the 
240V devices to be increasing with one device
SN: 1419 increasing more rapidly than the others
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Initial Turn On – Hard Switch COLD Chamber 
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The plot below shows case temperature of the 240V 
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back to 3 Amps and the 240V adjusted to 200V at the 
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Initial Turn On – Hard Switch COLD Chamber 



Dynamic RDS(on) Drift

Drain current measurements displayed 
signs that the applied stress was affecting 
the dynamic RDS(on) performance of the 
devices.  
• Oscilloscope displays indicated that 

various device capacity to sink current 
was diminishing over time.

• The effect was most pronounced for the 
200V specimens.

• The devices in the hot chamber were less 
affected than those in the cold chamber.

• Required an Active Clamping Circuit [3].
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Rds(on) Drift After 337 Hours of Stress



Hard Switching 200V, Degradation after 337 Hours

Turn On

I Drain (Composite)

Scope display showing substantial commutated current variations for all six devices on boards 1 and 3: 

Cold Chamber Hot Chamber
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Note difference in peak to peak between the cold chamber and the 
hot chamber, indicating the sensitivity of Rds(on) drift to temperature. 



Dynamic RDS(on) Post 337 Hours
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Dynamic RDS(on) Post 337 Hours
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Dynamic RDS(on) Drift Over 337 Hours of Stress



Conclusions
• These devices did not display any worrisome signs of degradation 

in terms of leakage current, dielectric breakdown or catastrophic 
failure during the 337 hours of stress.

• At 200V (absolute maximum rating for VDS) the dynamic RDS(on)
increased dramatically, the rate of drift was less at 90°C compared 
to 10°C.



Additional Considerations
• To realize the performance gains from using eGaN devices, 

appropriate design techniques must be employed.  For example, 
the gate drive requirements of an eGaN device is not compatible 
with a MOS FET.  The gate voltage must be limited to +6V,-4V(GaN 
FET) compared to +/- 20V (MOS FET), including transients.

• Since eGaN FETs are piezo electric devices, their sensitivity to 
vibration and thermal expansion should be considered.
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Stressor Temp (°C) Duration (Hrs) Total (Hrs)
Leakage 25 0.63 0.63

Hard Switching 10,25 3.68 4.31
Leakage 25 0.49 4.80
Leakage 25 0.44 5.24
Leakage 25 4.05 9.30
Leakage 25 1.92 11.22

Hard Switching 10,25 6.18 17.40
Hard Switching 10,90 15.81 33.21

Leakage 25 1.93 35.14
Hard Switching 10,90 16.59 51.73

Leakage 10,90 1.79 53.52
Hard Switching 10,90 26.84 80.36

Leakage 10,90 0.88 81.24
Hard Switching 10,90 18.56 99.81

Leakage 10,90 0.47 100.28
Hard Switching 10,90 77.54 177.82

Leakage 10,90 0.31 178.13
Hard Switching 10,90 44.48 222.60
Hard Switching 10,90 114.60 337.20
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Stressor Schedule



Hard Switching 160V, Degradation after 337 Hours

Turn On
VDS 200V

I Drain (Composite)

Scope display showing minimal commutated current variations for all six devices on board 2 and 4: 

Cold Chamber Hot Chamber
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• The Hard Switching Test was allowed to run on the cold samples only          
(TA =10°C) at 200Vdc on both cards, 125us pulses at 3Amp with a pulse 
repetition rate of 8KHz.

• The samples in the hot chamber were operated with the high current supply 
disabled at 200V and TA =25°C.

• The test ran for 227 minutes and was shut down.
• The current sharing scheme was incapable of limiting the current in the 

alternate board during the current collapse events.
• The voltage level of the 240Vdc group was lowered to 160Vdc.
• The burn-in circuit was modified so that each board could have its own 

independent current source.
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Modification of Hard Switching Test
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