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Acronyms 
Vanderbilt Engineering 

• COTS: Commercial off the shelf 
• CPU: Central Processing Unit 
• DRAM: Dynamic random-access memory 
• HPC: High performance computing 
• LANL: Los Alamos National Laboratory 
• MWG: Mitigation working group at LANL 
• SEE: Single event effect 
• SEFI: Single event functional interrupt 
• SEL: Single event latchup 
• SEU: Single evet upset 
• SRAM: Static random-access memory 
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Presentation Structure 
Vanderbilt Engineering 

• Introduction: Purpose of this work and main findings 

• Test set-up: Software, hardware, and alpha particle source 

• Results: SEU propagation, and SEFIs 

• Current work: Proton data analysis 

• Future work: Multicore microprocessor 

• Conclusions 
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Introduction 
Vanderbilt Engineering • Overall project purpose: 

o Characterize SEEs of COTS HPC 
for operation in highly-shielded 
(habitable) space environments. 

o COTS computing provide 
inexpensive augmentation to 
spacecraft computational power1,2,3 

o What are the key critical factors that 
affect the SEFI and error rate? Due 
to ionizing radiation2 

• Target device: Cortex-A8 
microprocessor on the BeagleBone 
Black board 

Cortex-A8 memory structure 
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Introduction 
Vanderbilt Engineering 

• Main Findings: 
o The SEFI cross-section (σ) is affected by the cache memory configuration 
o When cache-on, more halt SEFIs are experienced 
o No SEUs could be detected when isolating the cache by storing instructions, 

data, and stack off-chip (key factor to analyze SEU data) 
• Purpose of this work: 
o SEFI characterization of target under alpha particles 
o Dynamic testing of target with MGW radiation benchmarks2,3,4 

o Find reasons some algorithms have higher SEFI σs than others 
o Begin test methodology to classify different types of SEFIs 
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Test Set-Up: Algorithms 
Vanderbilt Engineering 

• Algorithms: Mitigation Working Group at Los Alamos 
National Laboratory LANL radiation benchmarks3 

• Selected benchmarks: Matrix multiply (MM), and sort 
algorithm (Q-Sort) 

• Execution: One completed loop of the flow chart is one 
benchmark cycle 

o Benchmarks were run on bare-metal (no operating 
system used) 

• Memory during testing: 
o Instructions and stack in the off-chip DRAM 
o Data in the on-chip SRAM 
o ECC and parity always off 
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Test Set-Up: Source & Target 
Vanderbilt Engineering 

• 10 and 0.1 μ-Ci Am-241 with 4-MeV alpha 
particles 

• Flux of 10 μ-Ci = 1,000 
 

• Flux of  0.1 μ-Ci = 10 
 

• The Cortex-A8 had a 3.95 x 3.95  

decapsulated opening 
 • LET is 0.7 (   
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Test Set-Up: SEFI Capture 
Vanderbilt Engineering

A SEFI occurs when an ion strike triggers the control circuitry of one of the 
subsystems. The system could enter an undefined state until a reset or 
sometimes a power cycle is performed.6,7 

SEFI Mechanism 
Reset The microprocessor resets on in its own.7 For the Cortex-A8 instructions/data is 

erased (volatile memory) and it is hard to differentiate from crash SEFIs 
Crash The processor gets into an undefined state. Fetch and execute cycles are halted7 

Trigger: Direct/indirect ionization in special purpose registers 
Trigger: Access to invalid instruction or data memory-> entrance to “abort exception 
handler”8 

Trigger: Access to invalid instruction or data memory-> entrance to “undefined 
exception handler”8 

Peripheral When the system does not operate the peripherals as desired7 

Trigger: Direct ionization in the peripheral’s control registers 
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Test Set-Up: SEFI Capture 
Vanderbilt Engineering 

• Cache-On: Algorithms experienced higher occurrences of halt SEFIs 
• SEUs in the cache control circuitry could be obstructing fetch of instructions 
• Halt SEFI: Is either a reset/or crash SEFI (due to volatile memory) 
• SEFIs events: MM cache on/off (3)/(3), Q-Sort cache on/off (5)/(4) 
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Test Set-Up: Memory 
Vanderbilt Engineering 

• Cache ($) SEU σ test: 
o No SEUs, after isolating $ by 

storing data in off-chip DRAM 
o Single entrance to undefined 

instruction handler indicates 
possible SEU in L1 inst. cache 

o MM runs 2.5x faster cache-on, and 
2.8x faster cache-off when data in 
SRAM compared to Q-Sort 

D=Data. Different settings demonstrate 
proper use of cache, and cache isolation 
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Test Set-Up: Memory 
Vanderbilt Engineering 

• Time ratio (  : 
o MM is 2.7x faster cache-on vs. cache-off. Q-Sort is 3.13x faster cache-on vs. 

cache-off (higher performance) with data in SRAM 
o Cache hit/miss ratios could provide reason for Q-Sort’s higher performance 

gain 
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Results: Benchmark Cycle Errors with Alpha Source 

Results 
Matrix 

Vanderbilt Engineering 

• 1 SEU in MM might be  
propagating faster into 
errors ( 2.5x faster $-on 
and 2.8x faster $-off vs. 
Q-Sort) 

• SEUs ≠ errors 
• More errors could 

accumulate with higher 
fluxes 
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Results: Campaign Benchmark Error Cross-Section (σ) 
Vanderbilt Engineering 

• Low σ for cache-on: 
o Preliminary cache isolation 

demonstrated SEUs occur mainly in 
main memory 

• Algorithmic dependency in Error σ: 
o MM always had higher error σ due 

to propagation of SEUs 
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Results: SEFIs 
Vanderbilt Engineering 

• MM higher SEFI σ, cache-on : 
o Cache hit/miss ratios could provide 

reason 
• Higher σ for Q-Sort, cache-off: 
o Factors other than build-up of stack   

frames in the stack (stack in off-chip 
memory) makes recursive algorithms 
vulnerable to SEFIs 

• For these test conditions the SEFI σ is 
affected by the cache configurations 
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Current Analysis: Proton Test Campaigns at the Mayo 
Clinic 

Vanderbilt Engineering 

Proton beam campaign hardware set-up 

Beagle Bone Black 
with Cortex-A8 JTAG 

• Used benchmarks: 
o Advanced encryption standard AES 
o Cache test (summation algorithm) 
• Purpose: 
o SEFI dependence to cache 

configuration 
o Compare stack influence between 

higher control flow dependence (AES) 
and a lower control flow dependence 
(Summation) 

• Currently doing data analysis 
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New Target: Cortex-A72 on the Raspberry Pi 4 Model B 

Cortex-A72 memory structure 

Vanderbilt Engineering 

• Interest: 
o Mimic multiple nodes of a 

high-performance 
computer 

o Run bare-metal source 
code 

o Compare benchmarks SEFI 
results with single core 
Cortex-A8 
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Conclusions and Future Work 
Vanderbilt Engineering 

• Conclusions: 
o SEFI σ is affected by the cache memory configuration 
o Time ratios  demonstrated that Q-Sort has a higher performance gain when 

cache-on 
o Cache hit/miss ratios could provide explanation for Q-Sort’s lower SEFI σ 

when cache-on 
o When cache-on more halt SEFIs were experienced 
o Lower “campaign benchmark error σ” is due to SEUs mainly occurring in main 

memory (ECC was off) 
• Future work: 
o Proton data analysis to further clarify SEFI mechanisms in Cortex-A8 
o SEFI characterization on multicore architecture platform 
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Vanderbilt Engineering 
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