# Modification of MIL-STD-883 TM1019 for rapid COTS path-to-flight

#### Leif Scheick

#### Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca

U.S. Government sponsorship acknowledged. This research was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration under the NASA Electronic Parts and Packaging Program (Code AE). Other data was collected from NASA flight projects.

# Classical WCA is cost prohibitive to smaller projects



#### • Multiple steps

- Raw data/report -> Application formatting -> Software macro for WCRDs -> 5x factor for non-RLAT WCRDs -> making PDF to send to Cog-Es of all parameters -> determining which parameters to ask Cog-Es for specific feedback
- SEE testing can scope to mission, why not TID?
  - Down select of circuit mode like SEL or SEFI
  - Loose guideline for process based on expansive historical data and engineer insight
- JPL has a deep bench for TID
  - Similar process can be developed using 1019 as baseline
  - Tailored plan based on known technology trends





Abraham Wald's Work on Aircraft Survivability, June 1984, Journal of the American Statistical Association 79(386):259-267



#### Plan

- Review historical data and test plans
- Review application of data to missions
  - WCBD et al
  - Aging and other failure modes can be leveraged
- Identification of serial vulnerabilities
  - Part, circuit and system
- Develop plan to test only critical parameters
- Demonstrate on known parameters of interest (POI)



K. Sutaria, A. Ramkumar, R. Zhu and Y. Cao, "Where is the Achilles Heel under Circuit Aging," 2014 IEEE Computer Society Annual Symposium on VLSI, 2014, pp. 278-279, doi: 10.1109/ISVLSI.2014.106.

## **Current plan**



- Compile all data on selected opamp/LREG/BJT.
- Identify high criticality parameters
- Define test plan for such
  - with infrastructure quick test leveraged from available assets
  - without infrastructure Eval cards come to mind.
- Case studies for guideline
- Develop a notional questionnaire to screen devices.
  - Can we mine RadFX for TRRs that triggered critical tests?

#### **Chosen parts**



#### • OPAMPs

- OP11, OP484, OP470, OP471
- Well known part with a typical sensitivity – slew and Vos
- Linear regulators
  - LM137, LP2953, LM117
  - Industry wide application with recurring sensitivities Vdropout, e.g.
- Bipolar junction transistors
  - 2N2222, 2N2907, 2N3501
  - Easy lay-up for proof-of-concept





To be presented at he 13th Annual NASA Electronic Parts and Packaging (NEPP) Program's Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD.

#### Vulnerable Parameters - Bipolar Junction Transistors

| JPL 10mR(Si)/S TO 100KRAD(Si)    |        |          | RTS 10mr(Si)/s to 100krad(Si)    |        |          | RTS 10mr(Si)/s to 100krad(Si)    |        |          |
|----------------------------------|--------|----------|----------------------------------|--------|----------|----------------------------------|--------|----------|
| 2N3501                           |        |          | 2N2222                           |        |          | 2N2907                           |        |          |
|                                  | biased | unbiased |                                  | biased | unbiased |                                  | biased | unbiased |
| HFE1 @ VCE=10V, IC=100uA         | F      | F        | HFE1 @ VCE=10V, IC=100uA*        | F      | F        | HFE1 @ VCE=10V, IC=100uA*        | F      | F        |
| HFE2 @ VCE=10V, IC=1mA           | F      | F        | HFE2 @ VCE=10V, IC=1mA           | F      | F        | HFE2 @ VCE=10V, IC=1mA           | F      | F        |
| HFE3 @ VCE=10V, IC=10mA          | F      | F        | HFE3 @ VCE=10V, IC=10mA          | F      | F        | HFE3 @ VCE=10V, IC=10mA          | F      | F        |
| HFE4 @ VCE=10V, IC=50Ma          | F      | F        | HFE4 @ VCE=10V, IC=150mA         | F      | F        | HFE4 @ VCE=10V, IC=150mA         | F      | F        |
| VCESAT1 @ IC=1mA, IB=.1mA        | Р      | Р        | VCE(sat)1 @ IC=1mA, IB=0.1mA     | Р      | Р        | VCE(sat)1 @ IC=1mA, IB=0.1mA     | Р      | Р        |
| VCESAT2 @ IC=10mA, IB=1mA        | Р      | Р        | VCE(sat)2 @ IC=10mA, IB=1mA      | Р      | Р        | VCE(sat)2 @ IC=10mA, IB=1mA      | Р      | Р        |
| VCESAT3 @ IC=150mA, IB=15mA      | Р      | Р        | VBE(sat)1 @ IC=1mA, IB=0.1mA     | Р      | Р        | VBE(sat)1 @ IC=1mA, IB=0.1mA     | Р      | Р        |
| VBESAT @ IC=10mA, IB=1mA         | Р      | Р        | VBE(sat)2 @ IC=10mA, IB=1mA      | Р      | Р        | VBE(sat)2 @ IC=10mA, IB=1mA      | Р      | Р        |
| VBSAT2 @ IC=50mA, IB=5mA         | Р      | Р        |                                  |        |          |                                  |        |          |
|                                  |        |          |                                  |        |          |                                  |        |          |
|                                  |        |          |                                  |        |          |                                  |        |          |
| Biased parts were slightly worse |        |          | Biased parts were slightly worse |        |          | Biased parts were slightly worse |        |          |
| than unbiased.                   |        |          | than unbiased.                   |        |          | than unbiased.                   |        |          |
|                                  |        |          |                                  |        |          |                                  |        |          |

#### Vulnerable parameters - Operational Amplifiers

| JPL@ 10mR/s 100K  |        |          | JPL 10mR/s TO 50KRAD        |        |          | JPL 10mR/S TO 50KRAD   |           |          | RTS 10mR/s TO 100KRAD        |        |          |
|-------------------|--------|----------|-----------------------------|--------|----------|------------------------|-----------|----------|------------------------------|--------|----------|
| OP11              |        |          | OP484                       |        |          | OP470                  |           |          | OP471                        |        |          |
|                   | biased | unbiased |                             | biased | unbiased |                        | biased    | unbiased |                              | biased | unbiased |
| VIO @ ±15V        | Р      | F        | VOS @ ±15V                  | F*     | F        | VOS @ ±15V             | F*        | F*       | IB+ @ VS=+/-15V              | F      | F        |
| IIO @ ±15V        | F      | F        | IIO @ ±15V                  | F*     | F        | IIO @ ±15V             | F*        | F*       | IB- @ VS=+/-15V              | F      | F        |
| IB+@±15V          | F      | F        | IB+@±15V                    | F      | F        | IB+ @ ±15V             | F         | F        | AVO @ VS=+/-15V RL=10kΩ      | F      | F        |
| IB- @ ±15V        | F      | F        | IB - @ ±15V                 | F      | F        | IB- @ ±15V             | F         | F        | CMRR @ VS=+/-15V, VCM=+/-11V | F*     | F*       |
| CMRR @ ±15V       | F      | F        | CMRR @ ±15V                 | F*     | F*       | CMRR @ ±15V VCM=+/-11V | F         | F        |                              |        |          |
| AVO @ ±15V RL=2K  | Р      | F        | PSRR @ ±15V VS= ±2V > ±15V  | F*     | F*       | AVS @ ±15V RL=2K       | F*        | F        |                              |        |          |
|                   |        |          | AVS @ ±15V RL=2K VO=+/-10V  | F*     | F*       | AVS @ ±15V RL=10K      | F         | F        |                              |        |          |
|                   |        |          | AVS @ ±15V RL=10K VO=+/-10V | F*     | F*       | SR+ @ ±15V RL=2K       | F*        | F        |                              |        |          |
|                   |        |          |                             |        |          | SR- @ ±15V RL=2K       | Р         | F*       |                              |        |          |
|                   |        |          |                             |        |          | PSRR VS=+/-2V > +/-15V | F* (CH 2) | F        |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
| Unbiased were WC. |        |          | Unbiased were WC.           |        |          | Unbiased were WC.      |           |          | Unbiased were WC.            |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          | * 99/90 only                |        |          | * 99/90 only           |           |          | * 99/90 only                 |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |
|                   |        |          |                             |        |          |                        |           |          |                              |        |          |

## Vulnerable Parameters – Linear Regulators

| N   | A | Ż          | A |
|-----|---|------------|---|
| 1.1 |   | <u>ز</u> . |   |

| JPL 10mR(Si)/s up to 15Krad(Si)               |        |          | JPL 5mR(Si)/s TO 10.5KRAD(Si)                    |        |          | JPL 5mR(Si)/s TO 30KRAD(Si)                  |        |          |
|-----------------------------------------------|--------|----------|--------------------------------------------------|--------|----------|----------------------------------------------|--------|----------|
| LM137                                         |        |          | LP2953 LDO Regulator                             |        |          | LM117 LDO Regulator                          | biased | unbiased |
|                                               | biased | unbiased |                                                  | biased | unbiased | Vref @ VD=5V IL=10mA                         | F      |          |
| VREF @ 10 mA (AL)                             | F      | F        | Vout @ Vin=6V                                    | F      | F        | Vref VIN=5.50V IL=5.0mA, 500mA               | F      |          |
| VREF VIN=-4.25V IL= 5mA                       | F      | F        | Vout @ VD=.3 thru 1V il=1Ma TO 200Ma             | F      | F        | Vref VIN=30.00V IL=5.0mA, 72.7mA             | F      |          |
| VR Line -4.25V to -30V                        | F      | F        | Dropout @ 1ma, 50mA, 100mA, 250mA                | F      | F        | 'VR Line Vdiff=3V to 28.75V                  | F      |          |
| Load Reg @ Vin=-6.25, IL=5mA to 500mA         | F      | F        | Gnd Pin current @ 1ma, 50mA, 100mA, 250mA        | F      | F        | 'IADJ VIN=4.25V IL=5.0mA                     | F      |          |
| IBIAS VIN=-4.25V IL= 5mA                      | F      | F        | Vref @ 2.3V, 5V, 6V IL = 1mA thru 200mA          | F      | F        | 'IADJ VIN=4.25V IL=500.0mA                   | F      |          |
| IBIAS VIN=-6.25V IL= 5mA                      | F      | F        | Feedback Current                                 | F      | F        | 'IADJ vs Line                                | F      |          |
| ladj Vin=4.25 V to 30V                        | F      | F        |                                                  |        |          | 'IADJ vx Load                                | F      |          |
| ladj IL=5mA to 500mA                          | F      | F        |                                                  |        |          | 'Min Load VO=2.5V VIN=5.50V                  | F      |          |
| Min Load VIN=-4.25V                           | F      | F        |                                                  |        |          | Vout VIN=5.00V IL= 25mA, 75mA                | F      |          |
| Min Load VIN=-14.25V                          | F      | F        |                                                  |        |          | Vout VIN=12.00V IL= 25mA, 75mA               | F      |          |
| Min Load VIN=30V                              | F      | F        |                                                  |        |          | Dropout IL= 5mA, 50mA, 100mA                 | F      |          |
|                                               |        |          |                                                  |        |          | Dropout IL=150mA, 200mA, 200mA, 250mA, 300mA | F      |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
| LoadReg passes at lower current range or      |        |          | The unbiased parts were more noticeable          |        |          |                                              |        |          |
| high Vin voltage and even lower current range |        |          | in terms of the degradation.                     |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
| The unbiased parts were more noticeable       |        |          | Voltage and current levels played a part at what |        |          |                                              |        |          |
| in terms of the degradation.                  |        |          | rad level they began to fail.                    |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |
|                                               |        |          |                                                  |        |          |                                              |        |          |



## Identified vulnerable circuit and systems

#### Circuits

- High gain circuits
  - Used in instruments and communications
- Current monitoring
  - Sensitive to minor changes
- Low leakage circuits
  - Switches and power MOSFETs

#### Systems

- Instrumentation apps

   Need precision
- Power modules and battery systems
  - Need precise current measurement and low leakage
- Radios and radars
   Need high gain

## Critical Paths and Readiness For Testing

- Convergent parameters for part, circuit and applications
- Assists in place can allow for quick turn testing
- Eval boards can extract parameters with minimal system engineering

| Worst Case Failures            |                   | CURRENT INFRASTRU            | RE   |    | WITHOUT CURRENT INFRASTRURE                    |  |  |  |
|--------------------------------|-------------------|------------------------------|------|----|------------------------------------------------|--|--|--|
| Offset Voltage                 | LTS2020 W/2101 FB |                              |      | В  | Build Eval board w/feedback loop using         |  |  |  |
| Offset Current                 |                   | Unless part comes in odd     |      |    | ow noise Op-amps along with some               |  |  |  |
| Input Bias current             |                   | package we should be fine    |      |    | ower supplies, DMMs, pico ammeters             |  |  |  |
| Common Mode Rejection Ra       | atio              | with our existing hardware   | e.   | aı | nd scope.                                      |  |  |  |
| Open Loop Gain                 |                   |                              |      |    |                                                |  |  |  |
|                                |                   | OnAmn                        |      |    |                                                |  |  |  |
|                                |                   | oprimp                       |      |    |                                                |  |  |  |
|                                |                   |                              |      |    |                                                |  |  |  |
|                                | П.                |                              |      |    |                                                |  |  |  |
| WORST CASE FAILURES            | T                 | festing with Infrastruc      | ture | :  | Testing without Infrastructure                 |  |  |  |
| HFE                            |                   | Eagle 300, B1500, B1505, HP4 | 1256 |    | Can be tested using the B1500 or B1505         |  |  |  |
|                                |                   | -                            |      |    | or the HP4256.                                 |  |  |  |
|                                |                   |                              |      |    |                                                |  |  |  |
|                                |                   |                              |      |    | If none of the above units are available       |  |  |  |
| I would recommend testing      | 1                 |                              |      |    | then we need 2 or 3 power supplies             |  |  |  |
| the VCE(sat) parameter as well |                   |                              |      |    | several DMMs and a need to fab an              |  |  |  |
| as the leakage parameters ex.  |                   | BIT                          |      |    | eval board, with sockets and a few             |  |  |  |
| IEBO, ICBO                     |                   |                              |      |    | resistors                                      |  |  |  |
|                                |                   |                              |      |    |                                                |  |  |  |
| WC Parameters                  | Test              | ing with Infrastructure      |      |    | Testing without Infrastructure                 |  |  |  |
| VREF                           | Eagle 300         |                              |      |    | If the regulator is a 3 terminal device it can |  |  |  |
| Vout                           | LTS2020           |                              |      |    | be tested using the B1500, B1505 or the        |  |  |  |
| IADJ                           |                   |                              |      |    | HP4256.                                        |  |  |  |
| LINE REG                       |                   | T D e e                      |      |    | If the Regulator has multiple pins with        |  |  |  |
| LOAD REG                       |                   | LKeg                         |      |    | various functions then we would require        |  |  |  |
| Min Load                       |                   | 0                            |      |    | addition power supples, DIVINIS and a scope.   |  |  |  |
|                                |                   |                              |      |    | A eval board would definitely need to be       |  |  |  |
|                                |                   |                              |      |    | built.                                         |  |  |  |

## Work to be done



- Test plan and execution of only critical parameter
  - With and without infrastructure
  - Separate analysis of SE tools needed
- Cost and risk comparison
  - Including risk buydown "formula"
- Compare/contrast with other tools
  - SEAM (Systems Engineering and Assurance Modeling)
  - SPICE and derivatives



## Conclusion



Comparing MEAN for lb+ (Vcc = 5V, Vcm = 0V, OpAmp#2)

- Reduce test time and cost
- Increase use of COTS
- Develop IP for COTS fast track





# **BACK UP**

To be presented at he 13th Annual NASA Electronic Parts and Packaging (NEPP) Program's Electronics Technology Workshop (ETW), NASA GSFC, Greenbelt, MD.