Development of Consensus Standards to Support IGA Analysis of Microelectronic Packages

Karl K. Rink, Ph.D.

Rink International LLC

NASA Electronic Parts and Packaging (NEPP) Program 13th Annual NEPP Electronic Technology Workshop (ETW) June13th -16th, 2022

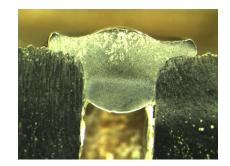
Outline

- Motivation
- Phase I: Goals and Accomplishments
- Phase II: Goals and Accomplishments
- Phase III: Goals and Accomplishments
- Research in Progress
- Phase IV / Future Work
- Summary

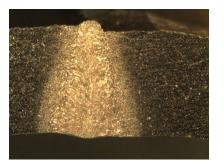
Motivation

Moisture Trapped Inside Microelectronic Packages Can Cause Long-Term Problems and Lead to Device Failures

- Military standards mandate internal moisture levels of microelectronic packages not exceed 5000 ppmv.
 - Mil-Std-883 and Mil-Std-750, TM 1018
- An assortment of commercial products have similar requirements.
 - Energetic devices, MEM's technologies, implantable devices, etc.
- Internal Gas Analysis (IGA) methods using mass spectrometers are used to measure the moisture content of internal gases withdrawn from devices.
- Various moisture calibration systems for IGA are commercially available.
 - As a result, IGA methods are generally considered most accurate for relatively large packages - typically 0.1 cc or greater.
- The development of single-use moisture standards with internal volumes representative of typical microelectronic packages is an on-going need.
 - Target internal volumes ranging from 1 cc to 0.001 cc
 - Successful development would augment <u>not replace</u> existing systems

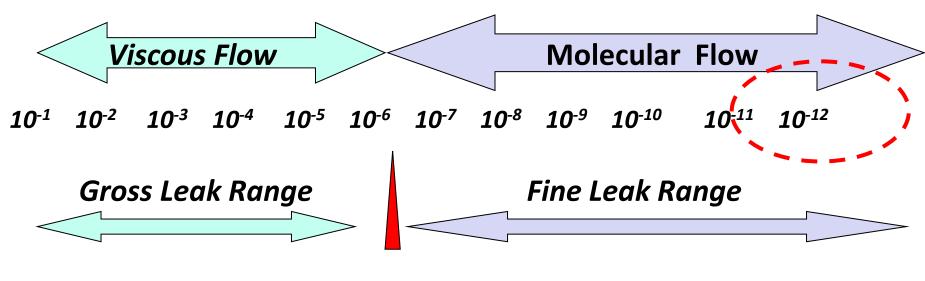

Phase I: Goals and Accomplishments

Fabrication and Testing of 1 cc Moisture Specimens Demonstrated:


- Moisture concentrations were controlled to less than 5000 ppmv
- The feasibility of four disparate moisture loading techniques:
 Volumetric, gravimetric and two proprietary techniques
- The feasibility of four welding techniques (for the body and fill port)

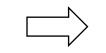
Inertia Weld (Body)

Resistance Weld (Fill Port)

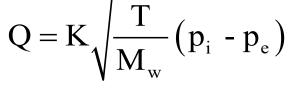


Laser Weld (Body)

- Evaluation of six different alloys for weldability and hermeticity
- Seal integrity to leak rates less than 1x10⁻¹¹ atm cc/s
 - Leak rate testing using ⁸⁵Kr (Radiflo®) gross and fine methodology


٦/

Phase I: High-Sensitivity Hermeticity Testing


Viscous Flow Equation:

$$Q = \frac{\pi r^{4}}{16(\mu)(L)} (P_{i}^{2} - P_{o}^{2})$$

P_i = total internal pressure

Molecular Flow Equation:

p_i = partial internal pressure

Phase II: Goals and Accomplishments

Fabrication and Testing of Moisture Specimens Demonstrated:

- Fabrication, moisture filling and hermetic sealing of specimens with internal volumes of 1 cc, 0.1 cc, 0.01 cc and 0.001 cc.
- Development of nitrogen "control" specimens with moisture concentrations less than 500 ppmv.
 - Repeatable concentrations of 200 +/- 50 ppmv deemed feasible
- Magnitude of moisture concentrations controlled to 1200 ppm.
 - Tolerance / variability work to be addressed in future project phases
- Oxygen concentrations reduced to non-detectable levels.
- Hydrogen concentrations greatly reduced using bake-out pre-treatment.
- Seal integrity to leak rates less than 1x10⁻¹¹ atm cc/s.

V

Phase III: Goals and Accomplishments

A Large Population of Specimens Was Fabricated for Testing:

- 40 specimens in each volume size: 1 cc, 0.1 cc, 0.01 cc and 0.001 cc.
- A single 1500 ppmv target was set for all moisture concentrations.
- All specimens passed 1x10⁻¹¹ atm cc/s leak testing.
- Results for the 1 cc specimens: average of 1250 ppmv.
- Unfortunately, a manufacturing error prevented many of the 0.1 cc specimens, and nearly all of the 0.01 cc and 0.001 cc specimens, from being tested.
 - A post-fabrication modification was attempted, but with only marginal success.
 - The modification itself often introduced microscopic flaws in many of the specimens.
 - Metallurgical analysis of these parts is currently underway.
- Replacement specimens are currently being fabricated and will be tested once completed.

Mass Balance Analysis Technique

- The mass balance technique currently under development is intended to enable moisture concentration analysis independent of IGA.
 - The ultimate goal in development of this technique is to help eliminate doubts in IGA measurements.
 - May prove particularly useful in resolving lab-to-lab discrepancies.
 - Given the limitations of existing laboratory instrumentation, initial mass balance work is being conducted using 10 cc vessels.

Mass Balance Closure and Process

- Three independent methods for closure of the mass balance are under investigation.
- The details of the closure process are beyond the scope of this discussion and will be disclosed at a later date.

Continued Refinement of the Mass Balance Technique

- Upon successful completion of the current work-in-progress proving feasibility, a larger population of 10 cc specimens will be fabricated.
 - The goal of this work will be to provide a means to ensure the accuracy of additional constituent concentrations in addition to moisture.
 - An additional goal will be to extend the mass balance technique to specimens with internal volumes of 1 cc and less.

Reproducibility and Repeatability Testing

Larger populations of 1cc, 0.1 cc, 0.01 cc and 0.001 cc specimens will be fabricated in order to statistically assess loading tolerances and moisture concentration variability.

Shelf-Life and Aging

Specimens will be fabricated in order to assess the effects of extended aging on moisture concentrations and to determine expected shelf-life.

Summary

- Prototype consensus standards to support IGA testing of microelectronic packages have been successfully fabricated and tested.
- Internal volumes ranged from 1.0 cc to 0.001 cc.
- Welding processes have been studied and selected.
- Specimens have been shown to pass extremely high-sensitivity leak tests.
- Four different moisture loading techniques have been demonstrated.
- Moisture concentrations were controlled to levels as low as 1000 ppmv.
- The presence of residual oxygen was eliminated from samples.
- A "mass balance approach" is under development as a possible means to provide verification of moisture concentrations independent of IGA.
- Future work will focus on quantification of moisture tolerances, specimen variabilities and aging and expected shelf life.