System in Package Tutorial (MCM/Hybrid)

Presenters/Hosts (in order): Matt Bergeron/Sultan Lilani Hosts Tony Lowry, SEAKR, Matt Bergeron, Integra, Ken Halsey, Integra, Sultan Lilani, Integra

Celebrating Over 35 Years of Providing High Quality Semiconductor Services

June 29, 2021

System-in-Package Benefits

Simplifies the product system board Layers and density I/O count and pitch Increases functionality per unit area/volume **Reduced** size More performance in less space **Improves Electrical Performance Reduces** parasitic **Reduces Manufacturing Costs** Reduced component count Inventory and carrying costs Lower supplier support Improve yield

Improved Reliability

Solder joint reduction Lessens specialized expertise and testing requirements Simplifies complex RF functions Eliminates tuning at the system board level Tested subsystem functions Improves time to market Make changes to subsystem without (costly) changes to system board Standardize subsystem "Macros" across a product family

Can be a platform for derivative products

Note: Benefits can move to detriments if bad decisions are made on key considerations and trade-offs

- The more complex you make a system/package = the more challenges to overcome
- Some of the Challenges:

Challenge #1	- Can I actually make the substrate work? (thickness, performance, widths and space/cost)
Challenge #2	– Can I procure the parts needed in the formfactor that will work (can you get die?)
Challenge #3	 Mathematically the more components you have in a system the more likely a failure. Simple example: 1 die in a flip chip & 90% typical yield = 90% Yield 5 die in a SiP and 90% yield on each = 59% yield (.9x.9x.9x.9x.9)
Challenge #4	- Reliability. The mix and match of components, shields, die, etc. can create stresses at the

Challenge #5

package or board level.

- Testability -Testability has to be designed in from the beginning.

Agenda/Topics Covered

Key Engineering Considerations

- a) Design considerations and trade-offs
- b) What to include
- c) Key Engineering considerations

Layout and Fabrication of Substrates

- a) Substrate
- b) What to know before you start
- c) Design rules and cost drivers

Assembly Considerations

a) Floor Plans

B

- b) Assembly Design Rules
- c) Stacking/encapsulation

Testing, Qualification & DPA

- a) Test considerations
- b) Complex Testing
- c) Qualification Testing

Engineering and Segmentation

Tony Lowry, SEAKR Engineering LLC

• Traditionally, ASICs integrate as much technology into a single die as possible

- Integration saves power and size

However

- More integration into advanced nodes
 - Greater cost
 - IP limited availability or IP porting fees
 - Yields go down
- Industry has reacted by creating more flexible
 ASICs to cover multiple applications

- De-aggregation represents new opportunities to reduce cost by reusing functional building blocks across multiple assemblies
- We call these die-level building blocks "Chiplets"
- Designs are no longer confined by the single choice of technology node or process as they are in monolithic design
 - 7nm FinFET processors with high speed connectivity to 90nm SiGe GPS or 16nm DDR controller or 40nm ADC/DACs
 - Older IP would no longer need to be ported to new technology nodes saving cost of porting fees, prototypes, test, and yield loss

• Separate the Reusable from the Unique from the Flexible

Example Design

- GPU
- Reprogrammable Algorithm
- DDR
- USB
- PCle
- ADC/DAC
- Power Manager

• Identify the best technology and any groupings

• Conceptualize the Floorplan

- Interconnectivity (Protocol, Bandwidth, Power)
- Standard substrate or silicon interposer or silicon bridge
- Signal and Power Integrity
- Thermal Integrity
- Mechanical Integrity
- Escape Routing

Mechanical

Feature	XSR Extreme Short Reach	USR Ultra Short Reach	AIB Advanced Interface Bus
Proprietary	Yes	Yes	Open Source
Bandwidth	800Gbps / mm die edge	500Gbps / mm die edge	1Tbps / mm die edge
Distance	Up to 50mm	Up to 40mm	As close as possible
Drive off chip	Yes	No	No
Substrate	Organic, C4 @150um pitch	Organic, C4 @150um pitch	Silicon Bridge, microbump @55um pitch
Relative Power	Low Power	Very Low Power	Very Low Power
Vendor Information	<u>Rambus</u> , <u>Synopsys</u>	Kandou Bus	Intel Whitepaper

- Cost savings and competitive advantage has and will continue to be the driving force behind integration
- SiP has proven that the added complexity of package design is worth the reduction in power and reduction in board complexity
- SiP technology combined with newer low power die to die connectivity, has enabled smart de-aggregation of monolithic ASIC design into Chiplets
- Eco-System of Chiplets will drive more innovation in SiP design along with package materials and thermal solutions

Layout and Substrates

Matt Bergeron, Integra

Substrates

Complexity of Design is increasing

- We see customers today using more design elements including:
 - Signal Integrity
 - Power Integrity
 - Thermal
 - Mechanical

Key things to identify prior to starting the design

• Target Fabricator & Assembler

- Know their design rules
- Know the manufacturers of substrate materials
 - Have the published mechanical & electrical characteristics of the materials.
- Know the passive component (i.e. capacitors)
 - Manufacturers, the procurement lead times and End Of Life status of various parts.
- Know the IP vendors and clarify requirements as soon as possible in the design process and ensure direct communication with the designer to answer questions quickly.

Typical Resin Properties

Resin System	ε[1MHz]	T _g [°C]	Relative cost	
FR-4-epoxy	3.5-3.60	125-135	1	
Polyfunctional FR-4	3.5-3.60	140-150	1-2	
High Temperature one component epoxy system	3.90-4.00	170-180	3-6	
Bismaleimide Triazine epoxy(BT)	3.2-3.30	180-190	3-6	
Polyimide epoxy	3.5-3.6	250-260	10-20	
Cyanate ester(CE)	2.80-3.50	240-250	20-30	
Polyimide	3.30-3.40	>260	10-20	
PTFE(melting point)	2.03-2.09	327	10-15	

ด

Key Design Issues

- Ask for accountability of substrate design modules or pieces.
 - Ensure that individual routes and interfaces are into SI/PI simulation as early as possible and present results for each of these one by one.
 - The final SI/PI analysis should be a confirmation run only, not part of the design process.

- Arrange to have the design into an initial DFM/DFA review very early in the process (within the first month in the project).
 - The first review should be done when the representative structures are all in place, meaning some routes or interfaces routed from top to bottom of stack, and the following are implemented, even if it is just a few samples:
 - Solder resist openings
 - Fiducials and markings
 - Assembly features including passive component footprints
 - Stackup fully defined.

Substrates & Design Rules

SUBSTRATE DESIGN RULES

DAISHO DENSHI

General Guide for Assembly Services

Integra Technologies Single-Source Turnkey Solution From Wafer Processing To Final Test

Design Rules

- Interaction between Assembly rules and Substrate rules
- Just because it works for one doesn't mean it works for both
- Example surface finish

FLIP CHIP FEATURES

Confidential

	Electroless Nickel Gold, Au : min 0.3 µm
	ENIG (Electroless Nickel Immersion Gold), Au : min 0.03 µm
SOR AGE HINGH	OSP (Organic Surface Preparation) : Glicoat - SMD F2(LX)
	SOP (Solder On Pad)
BUMP PAD TOP CO-PLANARITY	maximum 30 µm / Unit

Table 18. Flip Chip Surface Finish

Cost Drivers of Substrates

Cost Drivers & Elimination of Vendors

- Lead time
- More layers
- Larger area
- Exotic connections between layers
- Higher aspect ratios
 - ✓ Small holes through thick substrate
- Special tolerances
- Smaller features
 - Lines and spaces

				(Unit : µm unless noted)	
ITEM			SPECIFICATION	S & TOLERANCE	
		Turne	Standard	Special	
Core Material		Туре	HL832, HL832HS, E6/9BR, E6/9F, E6/9F8	HL832NX *, E679FGB *	
		Thickness	100, 150, 200	60, 80, 400	
Cu Foil Thi	ckness	Outer	9, 12, 18 (1/4 oz, 3/8 oz, 1/2 oz)	36 **, 70 *** (1 oz, 2 oz)	
ouron m	0111000	Inner	12, 18, 36 ** (3/8 oz, 1/2 oz, 1 oz)	70 *** (2 oz)	
Prepreg		Туре	GHPL830, GHPL830HS, GEA879W, GEA879F	GHPL830NX *,GEA679FG *	
(with woven g	lacc)	Thickness	60, 100	40, 45, 50	
RCF (RCC)	Thickness	50, 60, 65, 80	70, 85	
Drill/Pad	Theory of Links	Outer	120/270, 150/300, 200/375, 250/450	120/250 (Core ≤ 150), 100/230 (2 L)	
Size	(Mechanical)	Inner	150/450, 200/500	120/370, 150/400, 200/450	
	(mechanical)	Aspect Ratio	3.0		
		Outer	100/250, 130/300 (Bottom Cu ≥ 18)	80/200	
	CO ₂ Laser	Inner	100/250	80/200	
		Aspect Ratio	0.7		
Layer to La	ayer Metal Alignm	ent	+/- 75	+/- 50	
		Outer	50/50	35/35	
Line/Space	9	Inner	75/75	50/50	
Copper Pla (Electroless (ating (Through Hole) Cu)	Wall) Thickness	10 +/- 5, 15 +/- 5, 20 +/-5	25 +/- 5, 30 +/- 5, 35 +/- 5	
Pluaaina Ir	nk	Type	HBI200, AE1125*, THP100DX1*	AE3030	
		Туре	AUS5, AUS7, AUS308 *, AUS310 *	AUS402 *, SR7200G *, S-500	
		Thickness	15 +/- 10, 20 +/- 10, 25 +/- 10	30 +/- 10, 35 +/- 10 (Double Coating)	
Solder Res	sist	Opening Size	150 (minimum)	90 **** (minimum)	
		Min. Width	100 (minimum)	80 (minimum)	
		Registration	+/- 50	+/- 37.5	
		Type	Soft Bondable Au, Hard Au *****	OSP, SOP, Direct Au (without Ni) ******	
Surface Fil	nish	Plating	Electrolytic, Electroless		
		Nickel	3, 5 (minimum)		
Plating I hi	ckness	Gold	0.3, 0.5 (minimum), 0.03 (ENIG)		
		Line Width	60 +/- 25	50 +/- 25	
Capped Via Finished		Cu Thickness	25 +/- 8	21 +/- 8	
Board Twist / Bow		1.0 % per strip (maximum)	0.5 % per strip (maximum)		
Board Parallelity		+/- 100			
Tooling Ho	le to Tooling Hole	e (min: 1mm)	+/- 50 (0 ~ 200 mm)		
Tooling Hole to Strip Edge		+/- 50 (0 ~ 50 mm)			
	,, .		*	Hologon Erec Turco	

* Halogen Free Type ** Line / Space ≥ 100 / 100 mm *** Line / Space ≥ 150 / 150 μm **** Solder Resist Thickness : 10 μm ***** Electrolytic Plating only

****** Electroless Immersion Plating only

SiP – Assembly Considerations

Ken Halsey, Integra

B

Assembly Consideration for SiP

- Die I/O Count, Component Placement, PCB Overall Size, along with other mechanical considerations
- Some trade-offs and considerations:
 - Separation of thermally sensitive die
 - Memory limits maximum junction temperature to 85°C
 - Processor and logic can run up to ~100°C
 - Power supply parts may run up to 125°C
 - Size and shape of the board
 - Components & Passives in SiP solder attach hierarchy
 - Need inside vs. on board
 - Size & Location

- Other discussions and solutions:
 - Package-on-Package (PoP) for DDR
 - Package-in-Package (PiP)
 - Increases overall package thickness
 - Mount passives on backside of substrate
 - Requires ball depopulation and special fixturing
 - Wire bonding capillary requires spacing for manufacturability
 - Use an external DDR/FLASH combo package, mounted on the backside of the motherboard
 - Drives I/O count and routing out of the package
 - Stack capacitors of same form-factor
 - Stacking of Die Flip Chip and Wire Bond mix
 - Flip Chip die may require underfill
 - Room to underfill and "Keep Out Zones"

General Design Rules

Assembly

- Format: Array or single unit assembly (larger SiPs)
- Underfill keep-out zone
- Wire bond keep-out zone
- Component spacing
- Front side, backside components attachment
- Solder hierarchy: Eutectic vs. Pb Free
- Shielding methods: metal lids
- Encapsulation: Transfer mold, Dam & Fill, metal or ceramic lids

Description	Options	Details / Experience		
Substrate	Ceramic, Organic Iaminate, Flex Circuit, PCB			
Die Lid /	Si / SiGe / GaAs / Low K	I/O = 3 min to ~ X (bumps)		
Heat	Ceramic /Aluminum / Cu			
Spreader	Lid Stiffner / No lid			
Thermal Interface	Grease / Gel / Adhesive	*		
Underfill	Namics 8439-1 / Other(s)			
SMT Components	Resistors, Capacitors, etc. (high quantities are subject to review)	Conductive epoxy / Solder		
F/C Bump	Eutectic PbSn: 37/63	Pitch = 125um min		
	SAC or other Pb-free	Pitch = 125um min		
	High Pb: 90/10, 95/5, 97/3	Pitch = 125um min		
2nd Level Interface	LGA	Pitch = 0.4 mm min		
	BGA [Eutectic / Pb-free]	Pitch = 0.4 mm min		
Substrate	Ceramic	Ni/Au		
Metalization	Organic	Solder on Pad (SOP) / ENIG/ENIPIG		

- Die Stacking is the process of mounting multiple chips on top of each other within a single semiconductor package
 - Die stacking, which is also known as 'chip stacking', significantly increases the amount of silicon chip area that can be housed within a single package of a given footprint
 - Aside from space savings, die stacking also results in better electrical performance of the device, since the shorter routing of interconnections between circuits results in faster signal propagation and reduction in noise and cross-talk
- There are a number of approaches some blended with flip chip
 - Same size die, stair case stack, pyramid, die to die bonding

Die Considerations - Die Count and Area will drive overall SiP/MCM size

- Die Attach Methods
 - Epoxy, DAF, silver glass, eutectic
- Interconnect Technologies
 - Wire bond type & diameter
 - ✓ Gold, Copper, Aluminum (power products)
 - ✓ Wire bond assembly rules
 - ✓ Surface metallization
 - Flip Chip
 - ✓ Ball Pitch, Count, Diameter
 - ✓ Bump composition

- Other Considerations
 - Thickness of die, Flip Chip or Wire bond rules, substrate line and spacing
 - I/O Configuration and location
 is it routable?
 - Power Dissipation

Package Constraints

Package Requirements / Constraints

- Overall maximum height, X-Y dimension, PCB thickness
- Die count and sizes
- SiP components and locations
- Packaged parts mounted on the SiP
- Warpage
- Thermal constraints
- Solder Hierarchy & solder joint integrate
- Environmental
 - MSL, fine / gross leak, HTOL, etc.

Encapsulation Considerations

• Open Cavity

- Great RF insulation (especially when coupled with ground plane)
- Less process steps
- Access to various components for rework
- Transfer Mold / Glob Top / Dam & Fill
 - In some cases can be lower cost
 - Can interact poorly with SiP components such as plastic parts
 - Difficult to trouble shoot
- Flip Chip
 - Underfill/No Underfill?
 - Bump considerations in Mil/Aero applications (tin whiskers)
 - Reworkability
 - Vision concerns

Glob Top Encapsulation Process and Result:

Testing and Qualification

Sultan Lilani, Integra

General Testing Considerations

SiP Test Considerations

- Evaluate the SiP Design and consider if it should be classified as
 - ✓ Application Specific IC
 - ✓ Hybrid IC
- SiP by definition will have complex functional test requirements
- Plan on spending a considerable amount of time on the testing plan
 Testing the appropriate parts of each portion of the SiP
- Characterization and Production plans may vary radically (as with normal products)

Keys to cost-effective electrical test solutions:

- Early engagement with SIP designers to ensure design incorporates features for appropriate test coverage. These include access points, test modes etc.
- Leverage SCAN Chain and JTAG solutions using digital vectors from simulations.
- Focus on verifying connectivity of SIP components and interactions between SIP components, not necessarily performance of each parameter of individual SIP components
- Consider temperature performance of entire SiP due to the limitation of temperature performance of each component of the SiP
 - ✓ One component of the SiP may limit the operating temperature of entire SiP
- Test to usage conditions like speed and temperature extremes.

Overall Recommended Electrical Test Methodology

Test the Device the Specified Performance Characteristics

- Functional at-speed
 - ✓ Application speed at a minimum may not need spec speed
 - ✓ Test frequency is a major tester cost driver
- Comprehensive functional testing
 - ✓ Test all device functionality
 - ✓ Fault grading is not possible
 - > Only the manufacturer has device modeling capability
- Test key AC parameters
 - ✓ Key parameters are usually referenced to device clocks
 - Propagation delay
 - Setup and hold times
 - ✓ Use go-no-go testing to cover most AC parameters
 - > Tested over the entire functional pattern
 - ✓ Selected AC characterization measurements can be made

- DC measurements to the full specified limits
 - ✓ Attempt to test 25C parameters
 - at extended temperatures
 - Limit adjustments may be
 - required after testing
- Select the appropriate tester
 - ✓ No one tester can effectively test
 - all technologies

Integrate industry standard Automated Test Equipment (ATE) with auxiliary equipment to augment capabilities.

Examples: Credence ASL3000 + 50GHz RF Network Analyzer

Electrical Testing equipment

• Implement parallel test solutions and automated handling of product during testing when possible to keep cost of test low.

- Evaluate the SiP Design and decide if it should be considered:
 - Application Specific IC
 - Hybrid IC
 - Look for Mil-PRF-38534 (multiple die) and Mil-PRF-38535 for screening and qualification guidance
- Most SiPs use non-packaged die
- Consider material characteristic of the SiP product (example: organic substrate vs. ceramic substrate) CT and Environment consideration
- Consider performing construction analysis and pre-screen DPA to understand the manufacturing technology

1. SCOPE

1.1 <u>Scope</u>. This specification establishes the general performance requirements for hybrid microcircuits, multi-chip modules (MCM) and similar devices, and the verification requirements for ensuring that these devices meet the applicable performance requirements. Verification is accomplished through the use of one of two quality programs (Appendix A). The main body of this specification describes the performance requirements and the requirements for obtaining a Qualified Manufacturers List (QML) listing. The appendices of this specification are intended for guidance to aid a manufacturer in developing their verification program. Detail requirements, specific characteristics, and other provisions that are sensitive to the particular intended use should be specified in the applicable device acquisition specification.

Appendix A defines the quality management program that may be implemented by the manufacturer. Appendix A includes an option to use a quality review board concept, hereafter referred to as the Technology Review Board (TRB) in this document, which may be used to modify the generic verification, design, and construction criteria provided in this specification. Appendix B is not currently being used. Appendix C defines generic performance verifications. These verifications consist of a series of tests and inspections which may be used to verify the performance of devices. They may be used as is or modified as allowed by this specification. Appendix D defines generic performance verifications for non-hermetic device technologies. Appendix E defines generic design and construction criteria relative to this technology, including rework limitations and major change testing guidance. Appendix F provides statistical sampling procedures. Appendix G provides the requirements for Radiation Hardness Assurance (RHA).

1.3 <u>Classification</u>. Seven quality assurance levels are provided for in this specification. Four of these classes, in highest to lowest order, are K, H, G and D, as defined below. The fifth class is Class E, the quality level associated with a Class E device is defined by the acquisition document. The sixth and seventh classes are L and F for non-hermetic devices, with Class L being the higher quality assurance level.

1.3.1 <u>Class K</u>. Class K is the highest reliability level provided for in this specification. It is intended for space applications.

1.3.2 <u>Class H</u>. Class H is the standard military quality level.

1.3.3 <u>Class G</u>. Class G is a lowered confidence version of the standard military quality level (H) with QML listing in accordance with 4.5.2.2, a possibly lower temperature range (-40°C to +85°C), a manufacturer guaranteed capability to meet the Class H conformance inspection and periodic inspection testing, and a vendor specified incoming test flow. The device will meet the Class H requirements for in-process inspections and screening.

1.3.4 <u>Class D</u>. Class D is a vendor specified quality level available to this specification. This is a possibly lower temperature range (0°C to +70°C) part with a vendor specified test flow available from a QML listed manufacturer.

1.3.5 <u>Class E</u>. Class E designates devices which are based upon one of the other classes (L, K, H, G, or F) with exceptions taken to the requirements of that class. These exceptions are specified in the device specification, therefore the device specification should be carefully reviewed by the user to ensure that the exceptions taken will not adversely affect the performance of the system.

1.3.6 <u>Class L</u>. Class L is the highest quality class for non-hermetic devices.

1.3.7 <u>Class F</u>. Class F is the standard quality class for non-hermetic devices.

MIL-PRF-38534L

APPENDIX C

*

TABLE C-VI. Package evaluation requirements.

Subgroup Class		ass	Test	Specification or			Quantity	Reference
	К	Н		Standard	Method	Condition	(accept number)	paragraph
1	X	X	Physical dimensions	MIL-STD-883	2016	Acquisition document	3 (0)	C.3.8.3
2	Х	Х	Visual Inspection <u>1</u> /	MIL-STD-883	2009		100 percent	C.3.8.4
	X	X	Device Finish 2/	MIL-PRF-38534	N/A	Acquisition document	3 (0)	C.3.8.4
3	Х	Х	Thermal shock	MIL-STD-883	1011	С	3 (0)	C.3.8.2
	X	X	High temperature bake	MIL-STD-883	1008	1 hour at +150°C		and
	×	×	Lead integrity	MIL-STD-883	2004 2028 2028 3/	A1 (braze attached leads, 3 lead minimum). B1 (rigid leads and terminals only) B2 (lead fatigue) D (pad adhesion of leadless chip carriers) E (plating integrity of flexible and semi-flexible lead, 3 leads minimum). Pin grid array leads		C.3.8.5
	Х	Х	Seal		1014	A4 Unlidded cases		
4	×	×	Metal package isolation		1003	600 V dc 100 nA maximum	3 (0)	C.3.8.6
5	X	X	Solderability	MIL-STD-883	2003	Soldering temperature +245°C <u>+</u> 5°C	3 (0)	C.3.8.7
6	Х	Х	Salt atmosphere		1009	A	3 (0)	C.3.8.8

1/ JESD 9 may be used as a guideline to enhance MIL-STD-883, method 2009.

2/ Using a recognized methodology (e.g. EDS, XRF) verify that finishes containing tin (Sn) have a minimum of 3 percent lead (Pb) by weight per MIL-PRF-38534 (JESD213 is also acceptable). Not required on packages with gold plated bodies and pins.

3/ B1 of method 2004 can be used as an option.

THANK YOU

Sales Contact information:

0

- www.integra-tech.com
- ✓ sales_inquiry@integra-tech.com
- in https://www.linkedin.com/company/i ntegra-technologies-llc/
 - https://www.integra-tech.com/contact

INTEGRA TECHNOLOGIES